From e94d9dcac90b4b0622f573656f32883807381145 Mon Sep 17 00:00:00 2001 From: Adam Greig Date: Sun, 15 Aug 2021 11:00:01 +0100 Subject: Initial commit. Import `registers.rs` from stm32ral. --- src/lib.rs | 628 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 628 insertions(+) create mode 100644 src/lib.rs (limited to 'src') diff --git a/src/lib.rs b/src/lib.rs new file mode 100644 index 0000000..c1eca44 --- /dev/null +++ b/src/lib.rs @@ -0,0 +1,628 @@ +// Copyright 2018 Adam Greig +// See LICENSE-APACHE and LICENSE-MIT for license details. + +//! This crate contains an MMIO abstraction that uses macros to read, +//! modify, and write fields in registers. +//! +//! See the [README](https://github.com/adamgreig/ral-registers/blob/master/README.md) +//! for further details. + +#![no_std] + +use core::cell::UnsafeCell; + +/// A read-write register of type T. +/// +/// Contains one value of type T and provides volatile read/write functions to it. +/// +/// # Safety +/// This register should be used where reads and writes to this peripheral register do not +/// lead to memory unsafety. For example, it is a poor choice for a DMA target, but less +/// worrisome for a GPIO output data register. +/// +/// Access to this register must be synchronised; if multiple threads (or the main thread and an +/// interrupt service routine) are accessing it simultaneously you may encounter data races. +pub struct RWRegister { + register: UnsafeCell, +} + +impl RWRegister { + /// Reads the value of the register. + #[inline(always)] + pub fn read(&self) -> T { + unsafe { ::core::ptr::read_volatile(self.register.get()) } + } + + /// Writes a new value to the register. + #[inline(always)] + pub fn write(&self, val: T) { + unsafe { ::core::ptr::write_volatile(self.register.get(), val) } + } +} + +/// A read-write register of type T, where read/write access is unsafe. +/// +/// Contains one value of type T and provides volatile read/write functions to it. +/// +/// # Safety +/// This register should be used where reads and writes to this peripheral may invoke +/// undefined behaviour or memory unsafety. For example, any registers you write a memory +/// address into. +/// +/// Access to this register must be synchronised; if multiple threads (or the main thread and an +/// interrupt service routine) are accessing it simultaneously you may encounter data races. +pub struct UnsafeRWRegister { + register: UnsafeCell, +} + +impl UnsafeRWRegister { + /// Reads the value of the register. + /// + /// # Safety + /// Refer to [UnsafeRWRegister]'s Safety section. + #[inline(always)] + pub unsafe fn read(&self) -> T { + ::core::ptr::read_volatile(self.register.get()) + } + + /// Writes a new value to the register. + /// + /// # Safety + /// Refer to [UnsafeRWRegister]'s Safety section. + #[inline(always)] + pub unsafe fn write(&self, val: T) { + ::core::ptr::write_volatile(self.register.get(), val) + } +} + +/// A read-only register of type T. +/// +/// Contains one value of type T and provides a volatile read function to it. +/// +/// # Safety +/// This register should be used where reads and writes to this peripheral register do not +/// lead to memory unsafety. +/// +/// Access to this register must be synchronised; if multiple threads (or the main thread and an +/// interrupt service routine) are accessing it simultaneously you may encounter data races. +pub struct RORegister { + register: UnsafeCell, +} + +impl RORegister { + /// Reads the value of the register. + #[inline(always)] + pub fn read(&self) -> T { + unsafe { ::core::ptr::read_volatile(self.register.get()) } + } +} + +/// A read-only register of type T, where read access is unsafe. +/// +/// Contains one value of type T and provides a volatile read function to it. +/// +/// # Safety +/// This register should be used where reads to this peripheral may invoke +/// undefined behaviour or memory unsafety. +/// +/// Access to this register must be synchronised; if multiple threads (or the main thread and an +/// interrupt service routine) are accessing it simultaneously you may encounter data races. +pub struct UnsafeRORegister { + register: UnsafeCell, +} + +impl UnsafeRORegister { + /// Reads the value of the register. + /// + /// # Safety + /// Refer to [UnsafeRWRegister]'s Safety section. + #[inline(always)] + pub unsafe fn read(&self) -> T { + ::core::ptr::read_volatile(self.register.get()) + } +} + +/// A write-only register of type T. +/// +/// Contains one value of type T and provides a volatile write function to it. +/// +/// # Safety +/// This register should be used where writes to this peripheral register do not lead to memory +/// unsafety. +/// +/// Access to this register must be synchronised; if multiple threads (or the main thread and an +/// interrupt service routine) are accessing it simultaneously you may encounter data races. +pub struct WORegister { + register: UnsafeCell, +} + +impl WORegister { + /// Writes a new value to the register. + #[inline(always)] + pub fn write(&self, val: T) { + unsafe { ::core::ptr::write_volatile(self.register.get(), val) } + } +} + +/// A write-only register of type T, where write access is unsafe. +/// +/// Contains one value of type T and provides a volatile write function to it. +/// +/// # Safety +/// This register should be used where reads and writes to this peripheral may invoke +/// undefined behaviour or memory unsafety. +/// +/// Access to this register must be synchronised; if multiple threads (or the main thread and an +/// interrupt service routine) are accessing it simultaneously you may encounter data races. +pub struct UnsafeWORegister { + register: UnsafeCell, +} + +impl UnsafeWORegister { + /// Writes a new value to the register. + /// + /// # Safety + /// Refer to [UnsafeRWRegister]'s Safety section. + #[inline(always)] + pub unsafe fn write(&self, val: T) { + ::core::ptr::write_volatile(self.register.get(), val) + } +} + +/// Write to a RWRegister or UnsafeRWRegister. +/// +/// # Examples +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// // Safely acquire the peripheral instance (will panic if already acquired) +/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// +/// // Write some value to the register. +/// write_reg!(stm32ral::gpio, gpioa, ODR, 1<<3); +/// +/// // Write values to specific fields. Unspecified fields are written to 0. +/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog); +/// +/// // Unsafe access without requiring you to first `take()` the instance +/// unsafe { write_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) }; +/// # } +/// ``` +/// +/// # Usage +/// Like `modify_reg!`, this macro can be used in two ways, either with a single value to write to +/// the whole register, or with multiple fields each with their own value. +/// +/// In both cases, the first arguments are: +/// * the path to the peripheral module: `stm32ral::gpio`, +/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to +/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or +/// `*const RegisterBlock`), +/// * the register you wish you access: `MODER` (a field on the `RegisterBlock`). +/// +/// In the single-value usage, the final argument is just the value to write: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// // Turn on PA3 (and turn everything else off). +/// write_reg!(stm32ral::gpio, gpioa, ODR, 1<<3); +/// # } +/// ``` +/// +/// Otherwise, the remaining arguments are each `Field: Value` pairs: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// // Set PA3 to Output, PA4 to Analog, and everything else to 0 (which is Input). +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: 0b01, MODER4: 0b11); +/// # } +/// ``` +/// For fields with annotated values, you can also specify a named value: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// // As above, but with named values. +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog); +/// # } +/// ``` +/// +/// This macro expands to calling `(*$instance).$register.write(value)`, +/// where in the second usage, the value is computed as the bitwise OR of +/// each field value, which are masked and shifted appropriately for the given field. +/// The named values are brought into scope by `use $peripheral::$register::$field::*` for +/// each field. The same constants could just be specified manually: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// // As above, but being explicit about named values. +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: stm32ral::gpio::MODER::MODER3::RW::Output, +/// MODER4: stm32ral::gpio::MODER::MODER4::RW::Analog); +/// # } +/// ``` +/// +/// The fully expanded form is equivalent to: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// // As above, but expanded. +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// (*gpioa).MODER.write( +/// ((stm32ral::gpio::MODER::MODER3::RW::Output << stm32ral::gpio::MODER::MODER3::offset) +/// & stm32ral::gpio::MODER::MODER3::mask) +/// | +/// ((stm32ral::gpio::MODER::MODER4::RW::Analog << stm32ral::gpio::MODER::MODER4::offset) +/// & stm32ral::gpio::MODER::MODER4::mask) +/// ); +/// # } +/// ``` +/// +/// # Safety +/// This macro will require an unsafe function or block when used with an UnsafeRWRegister, +/// but not if used with RWRegister. +/// +/// When run in an unsafe context, peripheral instances are directly accessible without requiring +/// having called `take()` beforehand: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// unsafe { write_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) }; +/// # } +/// ``` +/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module; +/// and the macro brings such constants into scope and then dereferences the provided reference. +#[macro_export] +macro_rules! write_reg { + ( $periph:path, $instance:expr, $reg:ident, $( $field:ident : $value:expr ),+ ) => {{ + #[allow(unused_imports)] + use $periph::{*}; + #[allow(unused_imports)] + (*$instance).$reg.write( + $({ use $periph::{$reg::$field::{mask, offset, W::*, RW::*}}; ($value << offset) & mask }) | * + ); + }}; + ( $periph:path, $instance:expr, $reg:ident, $value:expr ) => {{ + #[allow(unused_imports)] + use $periph::{*}; + (*$instance).$reg.write($value); + }}; +} + +/// Modify a RWRegister or UnsafeRWRegister. +/// +/// # Examples +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// // Safely acquire the peripheral instance (will panic if already acquired) +/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// +/// // Update the register to ensure bit 3 is set. +/// modify_reg!(stm32ral::gpio, gpioa, ODR, |reg| reg | (1<<3)); +/// +/// // Write values to specific fields. Unspecified fields are left unchanged. +/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog); +/// +/// // Unsafe access without requiring you to first `take()` the instance +/// unsafe { modify_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) }; +/// # } +/// ``` +/// +/// # Usage +/// Like `write_reg!`, this macro can be used in two ways, either with a modification of the entire +/// register, or by specifying which fields to change and what value to change them to. +/// +/// In both cases, the first arguments are: +/// * the path to the peripheral module: `stm32ral::gpio`, +/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to +/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or +/// `*const RegisterBlock`), +/// * the register you wish you access: `MODER` (a field on the `RegisterBlock`). +/// +/// In the whole-register usage, the final argument is a closure that accepts the current value +/// of the register and returns the new value to write: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// // Turn on PA3 without affecting anything else. +/// modify_reg!(stm32ral::gpio, gpioa, ODR, |reg| reg | (1<<3)); +/// # } +/// ``` +/// +/// Otherwise, the remaining arguments are `Field: Value` pairs: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// // Set PA3 to Output, PA4 to Analog, and leave everything else unchanged. +/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: 0b01, MODER4: 0b11); +/// # } +/// ``` +/// +/// For fields with annotated values, you can also specify a named value: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// // As above, but with named values. +/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog); +/// # } +/// ``` +/// +/// This macro expands to calling `(*instance).register.write(value)`. +/// When called with a closure, `(*instance).register.read()` is called, the result +/// passed in to the closure, and the return value of the closure is used for `value`. +/// When called with `Field: Value` arguments, the current value is read and then masked +/// according to the specified fields, and then ORd with the OR of each field value, +/// each masked and shifted appropriately for the field. The named values are brought into scope +/// by `use peripheral::register::field::*` for each field. The same constants could just be +/// specified manually: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// // As above, but being explicit about named values. +/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: stm32ral::gpio::MODER::MODER3::RW::Output, +/// MODER4: stm32ral::gpio::MODER::MODER4::RW::Analog); +/// # } +/// ``` +/// +/// The fully expanded form is equivalent to: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// // As above, but expanded. +/// (*gpioa).MODER.write( +/// ( +/// // First read the current value... +/// (*gpioa).MODER.read() +/// // Then AND it with an appropriate mask... +/// & +/// !( stm32ral::gpio::MODER::MODER3::mask | stm32ral::gpio::MODER::MODER4::mask ) +/// ) +/// // Then OR with each field value. +/// | +/// ((stm32ral::gpio::MODER::MODER3::RW::Output << stm32ral::gpio::MODER::MODER3::offset) +/// & stm32ral::gpio::MODER::MODER3::mask) +/// | +/// ((stm32ral::gpio::MODER::MODER4::RW::Analog << stm32ral::gpio::MODER::MODER3::offset) +/// & stm32ral::gpio::MODER::MODER3::mask) +/// ); +/// # } +/// ``` +/// +/// # Safety +/// This macro will require an unsafe function or block when used with an UnsafeRWRegister, +/// but not if used with RWRegister. +/// +/// When run in an unsafe context, peripheral instances are directly accessible without requiring +/// having called `take()` beforehand: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// unsafe { modify_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) }; +/// # } +/// ``` +/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module; +/// and the macro brings such constants into scope and then dereferences the provided reference. +#[macro_export] +macro_rules! modify_reg { + ( $periph:path, $instance:expr, $reg:ident, $( $field:ident : $value:expr ),+ ) => {{ + #[allow(unused_imports)] + use $periph::{*}; + #[allow(unused_imports)] + (*$instance).$reg.write( + ((*$instance).$reg.read() & !( $({ use $periph::{$reg::$field::mask}; mask }) | * )) + | $({ use $periph::{$reg::$field::{mask, offset, W::*, RW::*}}; ($value << offset) & mask }) | *); + }}; + ( $periph:path, $instance:expr, $reg:ident, $fn:expr ) => {{ + #[allow(unused_imports)] + use $periph::{*}; + (*$instance).$reg.write($fn((*$instance).$reg.read())); + }}; +} + +/// Read the value from a RORegister, RWRegister, UnsafeRORegister, or UnsafeRWRegister. +/// +/// # Examples +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// // Safely acquire the peripheral instance (will panic if already acquired) +/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// +/// // Read the whole register. +/// let val = read_reg!(stm32ral::gpio, gpioa, IDR); +/// +/// // Read one field from the register. +/// let val = read_reg!(stm32ral::gpio, gpioa, IDR, IDR2); +/// +/// // Read multiple fields from the register. +/// let (val1, val2, val3) = read_reg!(stm32ral::gpio, gpioa, IDR, IDR0, IDR1, IDR2); +/// +/// // Check if one field is equal to a specific value, with the field's named values in scope. +/// while read_reg!(stm32ral::gpio, gpioa, IDR, IDR2 == High) {} +/// +/// // Unsafe access without requiring you to first `take()` the instance +/// let val = unsafe { read_reg!(stm32ral::gpio, GPIOA, IDR) }; +/// # } +/// ``` +/// +/// # Usage +/// Like `write_reg!`, this macro can be used multiple ways, either reading the entire register or +/// reading a one or more fields from it and potentially performing a comparison with one field. +/// +/// In all cases, the first arguments are: +/// * the path to the peripheral module: `stm32ral::gpio`, +/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to +/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or +/// `*const RegisterBlock`), +/// * the register you wish to access: `IDR` (a field on the `RegisterBlock`). +/// +/// In the whole-register usage, the macro simply returns the register's value: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// // Read the entire value of GPIOA.IDR into `val`. +/// let val = read_reg!(stm32ral::gpio, gpioa, IDR); +/// # } +/// ``` +/// +/// For reading individual fields, the macro masks and shifts appropriately: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// // Read just the value of the field GPIOA.IDR2 into `val`. +/// let val = read_reg!(stm32ral::gpio, gpioa, IDR, IDR2); +/// +/// // As above, but expanded for exposition: +/// let val = ((*gpioa).IDR.read() & stm32ral::gpio::IDR::IDR2::mask) +/// >> stm32ral::gpio::IDR::IDR2::offset; +/// +/// // Read multiple fields +/// let (val1, val2) = read_reg!(stm32ral::gpio, gpioa, IDR, IDR2, IDR3); +/// +/// // As above, but expanded for exposition: +/// let (val1, val2) = { let val = (*gpioa).IDR.read(); +/// ((val & stm32ral::gpio::IDR::IDR2::mask) >> stm32ral::gpio::IDR::IDR2::offset, +/// (val & stm32ral::gpio::IDR::IDR3::mask) >> stm32ral::gpio::IDR::IDR3::offset, +/// )}; +/// # } +/// ``` +/// +/// For comparing a single field, the macro masks and shifts and then performs the comparison: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// # let rcc = stm32ral::rcc::RCC::take().unwrap(); +/// // Loop while PA2 is High. +/// while read_reg!(stm32ral::gpio, gpioa, IDR, IDR2 == High) {} +/// +/// // Only proceed if the clock is not the HSI. +/// if read_reg!(stm32ral::rcc, rcc, CFGR, SWS != HSI) { } +/// +/// // Equivalent expansion: +/// if (((*rcc).CFGR.read() & stm32ral::rcc::CFGR::SWS::mask) +/// >> stm32ral::rcc::CFGR::SWS::offset) != stm32ral::rcc::CFGR::SWS::R::HSI { } +/// # } +/// ``` +/// +/// # Safety +/// This macro will require an unsafe function or block when used with an UnsafeRWRegister or +/// UnsafeRORegister, but not if used with RWRegister, or RORegister. +/// +/// When run in an unsafe context, peripheral instances are directly accessible without requiring +/// having called `take()` beforehand: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// let val = unsafe { read_reg!(stm32ral::gpio, GPIOA, MODER) }; +/// # } +/// ``` +/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module; +/// and the macro brings such constants into scope and then dereferences the provided reference. +#[macro_export] +macro_rules! read_reg { + ( $periph:path, $instance:expr, $reg:ident, $( $field:ident ),+ ) => {{ + #[allow(unused_imports)] + use $periph::{*}; + let val = ((*$instance).$reg.read()); + ( $({ + #[allow(unused_imports)] + use $periph::{$reg::$field::{mask, offset, R::*, RW::*}}; + (val & mask) >> offset + }) , *) + }}; + ( $periph:path, $instance:expr, $reg:ident, $field:ident $($cmp:tt)* ) => {{ + #[allow(unused_imports)] + use $periph::{*}; + #[allow(unused_imports)] + use $periph::{$reg::$field::{mask, offset, R::*, RW::*}}; + (((*$instance).$reg.read() & mask) >> offset) $($cmp)* + }}; + ( $periph:path, $instance:expr, $reg:ident ) => {{ + #[allow(unused_imports)] + use $periph::{*}; + ((*$instance).$reg.read()) + }}; +} + +/// Reset a RWRegister, UnsafeRWRegister, WORegister, or UnsafeWORegister to its reset value. +/// +/// # Examples +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// // Safely acquire the peripheral instance (will panic if already acquired) +/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// +/// // Reset PA14 and PA15 to their reset state +/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER, MODER14, MODER15); +/// +/// // Reset the entire GPIOA.MODER to its reset state +/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER); +/// # } +/// ``` +/// +/// # Usage +/// Like `write_reg!`, this macro can be used in two ways, either resetting the entire register +/// or just resetting specific fields within in. The register or fields are written with their +/// reset values. +/// +/// In both cases, the first arguments are: +/// * the path to the peripheral module: `stm32ral::gpio`, +/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to +/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or +/// `*const RegisterBlock`), +/// * the module for the instance of that peripheral: `GPIOA`, +/// * the register you wish to access: `MODER` (a field on the `RegisterBlock`). +/// +/// In the whole-register usage, that's it: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// // Reset the entire GPIOA.MODER +/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER); +/// # } +/// ``` +/// +/// Otherwise, the remaining arguments are each field names: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap(); +/// // Reset the JTAG pins +/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER, MODER13, MODER14, MODER15); +/// reset_reg!(stm32ral::gpio, gpioa, GPIOB, MODER, MODER3, MODER4); +/// # } +/// ``` +/// +/// The second form is only available to RWRegister and UnsafeRWRegister, since `.read()` is +/// not available for WORegister and UnsafeWORegister. +/// +/// This macro expands to calling `(*$instance).$register.write(value)`, where +/// `value` is either the register's reset value, or the current read value of the register +/// masked appropriately and combined with the reset value for each field. +/// +/// # Safety +/// This macro will require an unsafe function or block when used with an UnsafeRWRegister or +/// UnsafeRORegister, but not if used with RWRegister or RORegister. +/// +/// When run in an unsafe context, peripheral instances are directly accessible without requiring +/// having called `take()` beforehand: +/// ```rust,no_run +/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() { +/// unsafe { reset_reg!(stm32ral::gpio, GPIOA, GPIOA, MODER) }; +/// # } +/// ``` +/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module; +/// and the macro brings such constants into scope and then dereferences the provided reference. +/// +/// Note that the second argument is a `*const` and the third is a path; despite both being written +/// `GPIOA` they are not the same thing. +#[macro_export] +macro_rules! reset_reg { + ( $periph:path, $instance:expr, $instancemod:path, $reg:ident, $( $field:ident ),+ ) => {{ + #[allow(unused_imports)] + use $periph::{*}; + use $periph::{$instancemod::{reset}}; + #[allow(unused_imports)] + (*$instance).$reg.write({ + let resetmask: u32 = $({ use $periph::{$reg::$field::mask}; mask }) | *; + ((*$instance).$reg.read() & !resetmask) | (reset.$reg & resetmask) + }); + }}; + ( $periph:path, $instance:expr, $instancemod:path, $reg:ident ) => {{ + #[allow(unused_imports)] + use $periph::{*}; + use $periph::{$instancemod::{reset}}; + (*$instance).$reg.write(reset.$reg); + }}; +} -- cgit v1.2.3