//! [`Monotonic`](rtic_time::Monotonic) implementation for the nRF Real Time Clocks (RTC). //! //! # Example //! //! ``` //! use rtic_monotonics::nrf::rtc::prelude::*; //! //! // Create the type `Mono`. It will manage the RTC timer, and //! // run with a resolution of 30.517 µs (32,768 ticks per second). //! nrf_rtc0_monotonic!(Mono); //! //! fn init() { //! # // This is normally provided by the selected PAC //! # let RTC0 = unsafe { core::mem::transmute(()) }; //! // Start the monotonic, passing ownership of the appropriate RTC object //! // relevant nRF52x PAC. //! Mono::start(RTC0); //! } //! //! async fn usage() { //! loop { //! // You can use the monotonic to get the time... //! let timestamp = Mono::now(); //! // ...and you can use it to add a delay to this async function //! Mono::delay(100.millis()).await; //! } //! } //! ``` /// Common definitions and traits for using the nRF RTC monotonics pub mod prelude { pub use crate::nrf_rtc0_monotonic; pub use crate::nrf_rtc1_monotonic; #[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))] pub use crate::nrf_rtc2_monotonic; pub use crate::Monotonic; pub use fugit::{self, ExtU64, ExtU64Ceil}; } #[cfg(feature = "nrf52805")] #[doc(hidden)] pub use nrf52805_pac::{self as pac, RTC0, RTC1}; #[cfg(feature = "nrf52810")] #[doc(hidden)] pub use nrf52810_pac::{self as pac, RTC0, RTC1}; #[cfg(feature = "nrf52811")] #[doc(hidden)] pub use nrf52811_pac::{self as pac, RTC0, RTC1}; #[cfg(feature = "nrf52832")] #[doc(hidden)] pub use nrf52832_pac::{self as pac, RTC0, RTC1, RTC2}; #[cfg(feature = "nrf52833")] #[doc(hidden)] pub use nrf52833_pac::{self as pac, RTC0, RTC1, RTC2}; #[cfg(feature = "nrf52840")] #[doc(hidden)] pub use nrf52840_pac::{self as pac, RTC0, RTC1, RTC2}; #[cfg(feature = "nrf5340-app")] #[doc(hidden)] pub use nrf5340_app_pac::{self as pac, RTC0_NS as RTC0, RTC1_NS as RTC1}; #[cfg(feature = "nrf5340-net")] #[doc(hidden)] pub use nrf5340_net_pac::{self as pac, RTC0_NS as RTC0, RTC1_NS as RTC1}; #[cfg(feature = "nrf9160")] #[doc(hidden)] pub use nrf9160_pac::{self as pac, RTC0_NS as RTC0, RTC1_NS as RTC1}; use portable_atomic::{AtomicU32, Ordering}; use rtic_time::{ half_period_counter::calculate_now, timer_queue::{TimerQueue, TimerQueueBackend}, }; #[doc(hidden)] #[macro_export] macro_rules! __internal_create_nrf_rtc_interrupt { ($mono_backend:ident, $rtc:ident) => { #[no_mangle] #[allow(non_snake_case)] unsafe extern "C" fn $rtc() { use $crate::TimerQueueBackend; $crate::nrf::rtc::$mono_backend::timer_queue().on_monotonic_interrupt(); } }; } #[doc(hidden)] #[macro_export] macro_rules! __internal_create_nrf_rtc_struct { ($name:ident, $mono_backend:ident, $timer:ident) => { /// A `Monotonic` based on the nRF RTC peripheral. pub struct $name; impl $name { /// Starts the `Monotonic`. /// /// This method must be called only once. pub fn start(rtc: $crate::nrf::rtc::$timer) { $crate::__internal_create_nrf_rtc_interrupt!($mono_backend, $timer); $crate::nrf::rtc::$mono_backend::_start(rtc); } } impl $crate::TimerQueueBasedMonotonic for $name { type Backend = $crate::nrf::rtc::$mono_backend; type Instant = $crate::fugit::Instant< ::Ticks, 1, 32_768, >; type Duration = $crate::fugit::Duration< ::Ticks, 1, 32_768, >; } $crate::rtic_time::impl_embedded_hal_delay_fugit!($name); $crate::rtic_time::impl_embedded_hal_async_delay_fugit!($name); }; } /// Create an RTC0 based monotonic and register the RTC0 interrupt for it. /// /// See [`crate::nrf::rtc`] for more details. #[macro_export] macro_rules! nrf_rtc0_monotonic { ($name:ident) => { $crate::__internal_create_nrf_rtc_struct!($name, Rtc0Backend, RTC0); }; } /// Create an RTC1 based monotonic and register the RTC1 interrupt for it. /// /// See [`crate::nrf::rtc`] for more details. #[macro_export] macro_rules! nrf_rtc1_monotonic { ($name:ident) => { $crate::__internal_create_nrf_rtc_struct!($name, Rtc1Backend, RTC1); }; } /// Create an RTC2 based monotonic and register the RTC2 interrupt for it. /// /// See [`crate::nrf::rtc`] for more details. #[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))] #[cfg_attr( docsrs, doc(cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))) )] #[macro_export] macro_rules! nrf_rtc2_monotonic { ($name:ident) => { $crate::__internal_create_nrf_rtc_struct!($name, Rtc2Backend, RTC2); }; } struct TimerValueU24(u32); impl rtic_time::half_period_counter::TimerValue for TimerValueU24 { const BITS: u32 = 24; } impl From for u64 { fn from(value: TimerValueU24) -> Self { Self::from(value.0) } } macro_rules! make_rtc { ($backend_name:ident, $rtc:ident, $overflow:ident, $tq:ident$(, doc: ($($doc:tt)*))?) => { /// RTC based [`TimerQueueBackend`]. $( #[cfg_attr(docsrs, doc(cfg($($doc)*)))] )? pub struct $backend_name; static $overflow: AtomicU32 = AtomicU32::new(0); static $tq: TimerQueue<$backend_name> = TimerQueue::new(); impl $backend_name { /// Starts the timer. /// /// **Do not use this function directly.** /// /// Use the prelude macros instead. pub fn _start(rtc: $rtc) { unsafe { rtc.prescaler.write(|w| w.bits(0)) }; // Disable interrupts, as preparation rtc.intenclr.write(|w| w .compare0().clear() .compare1().clear() .ovrflw().clear() ); // Configure compare registers rtc.cc[0].write(|w| unsafe { w.bits(0) }); // Dynamic wakeup rtc.cc[1].write(|w| unsafe { w.bits(0x80_0000) }); // Half-period // Timing critical, make sure we don't get interrupted critical_section::with(|_|{ // Reset the timer rtc.tasks_clear.write(|w| unsafe { w.bits(1) }); rtc.tasks_start.write(|w| unsafe { w.bits(1) }); // Clear pending events. // Should be close enough to the timer reset that we don't miss any events. rtc.events_ovrflw.write(|w| w); rtc.events_compare[0].write(|w| w); rtc.events_compare[1].write(|w| w); // Make sure overflow counter is synced with the timer value $overflow.store(0, Ordering::SeqCst); // Initialized the timer queue $tq.initialize(Self {}); // Enable interrupts. // Should be close enough to the timer reset that we don't miss any events. rtc.intenset.write(|w| w .compare0().set() .compare1().set() .ovrflw().set() ); rtc.evtenset.write(|w| w .compare0().set() .compare1().set() .ovrflw().set() ); }); // SAFETY: We take full ownership of the peripheral and interrupt vector, // plus we are not using any external shared resources so we won't impact // basepri/source masking based critical sections. unsafe { crate::set_monotonic_prio(pac::NVIC_PRIO_BITS, pac::Interrupt::$rtc); pac::NVIC::unmask(pac::Interrupt::$rtc); } } } impl TimerQueueBackend for $backend_name { type Ticks = u64; fn now() -> Self::Ticks { let rtc = unsafe { &*$rtc::PTR }; calculate_now( || $overflow.load(Ordering::Relaxed), || TimerValueU24(rtc.counter.read().bits()) ) } fn on_interrupt() { let rtc = unsafe { &*$rtc::PTR }; if rtc.events_ovrflw.read().bits() == 1 { rtc.events_ovrflw.write(|w| unsafe { w.bits(0) }); let prev = $overflow.fetch_add(1, Ordering::Relaxed); assert!(prev % 2 == 1, "Monotonic must have skipped an interrupt!"); } if rtc.events_compare[1].read().bits() == 1 { rtc.events_compare[1].write(|w| unsafe { w.bits(0) }); let prev = $overflow.fetch_add(1, Ordering::Relaxed); assert!(prev % 2 == 0, "Monotonic must have skipped an interrupt!"); } } fn set_compare(mut instant: Self::Ticks) { let rtc = unsafe { &*$rtc::PTR }; const MAX: u64 = 0xff_ffff; // Disable interrupts because this section is timing critical. // We rely on the fact that this entire section runs within one // RTC clock tick. (which it will do easily if it doesn't get // interrupted) critical_section::with(|_|{ let now = Self::now(); // wrapping_sub deals with the u64 overflow corner case let diff = instant.wrapping_sub(now); let val = if diff <= MAX { // Now we know `instant` whill happen within one `MAX` time duration. // Errata: Timer interrupts don't fire if they are scheduled less than // two ticks in the future. Make it three, because the timer could // tick right now. if diff < 3 { instant = now.wrapping_add(3); } (instant & MAX) as u32 } else { 0 }; unsafe { rtc.cc[0].write(|w| w.bits(val)) }; }); } fn clear_compare_flag() { let rtc = unsafe { &*$rtc::PTR }; unsafe { rtc.events_compare[0].write(|w| w.bits(0)) }; } fn pend_interrupt() { pac::NVIC::pend(pac::Interrupt::$rtc); } fn timer_queue() -> &'static TimerQueue { &$tq } } }; } make_rtc!(Rtc0Backend, RTC0, RTC0_OVERFLOWS, RTC0_TQ); make_rtc!(Rtc1Backend, RTC1, RTC1_OVERFLOWS, RTC1_TQ); #[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))] make_rtc!(Rtc2Backend, RTC2, RTC2_OVERFLOWS, RTC2_TQ, doc: (any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840")));