aboutsummaryrefslogtreecommitdiff
path: root/src/host.rs
blob: 18b9b624480a7c1c77158d6e1972cbf1ff24538c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
//! Host-side configurations for the target.
//!
//! See [`RuntimeBuilder::build`] to understand the linker script generation
//! steps.

// Please explicitly match all `Family` variants. If someone wants to add
// a new `Family`, this will show help them find all the settings they need
// to consider.
#![warn(clippy::wildcard_enum_match_arm)]

use std::{
    env,
    fmt::Display,
    fs,
    io::{self, Write},
    path::PathBuf,
};

/// Memory partitions.
///
/// Use with [`RuntimeBuilder`] to specify the placement of sections
/// in the final program. Note that the `RuntimeBuilder` only does limited
/// checks on memory placements. Generally, it's OK to place data in ITCM,
/// and instructions in DTCM; however, this isn't recommended for optimal
/// performance.
#[non_exhaustive]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Memory {
    /// Place the section in (external) flash.
    ///
    /// Reads and writes are translated into commands on an external
    /// bus, like FlexSPI.
    Flash,
    /// Place the section in data tightly coupled memory (DTCM).
    Dtcm,
    /// Place the section in instruction tightly coupled memory (ITCM).
    Itcm,
    /// Place the section in on-chip RAM (OCRAM).
    ///
    /// If your chip includes dedicated OCRAM memory, the implementation
    /// utilizes that OCRAM before utilizing any FlexRAM OCRAM banks.
    Ocram,
}

/// The FlexSPI peripheral that interfaces your flash chip.
///
/// The [`RuntimeBuilder`] selects `FlexSpi1` for nearly all chip
/// families. However, it selects `FlexSpi2` for the 1064 in order
/// to utilize its on-board flash. You can override the selection
/// using [`RuntimeBuilder::flexspi()`].
#[non_exhaustive]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum FlexSpi {
    /// Interface flash using FlexSPI 1.
    FlexSpi1,
    /// Interface flash using FlexSPI 2.
    FlexSpi2,
}

impl FlexSpi {
    fn family_default(family: Family) -> Self {
        match family {
            Family::Imxrt1064 => FlexSpi::FlexSpi2,
            Family::Imxrt1010
            | Family::Imxrt1015
            | Family::Imxrt1020
            | Family::Imxrt1040
            | Family::Imxrt1050
            | Family::Imxrt1060
            | Family::Imxrt1160
            | Family::Imxrt1170
            | Family::Imxrt1180 => FlexSpi::FlexSpi1,
        }
    }
    fn start_address(self, family: Family) -> Option<u32> {
        match (self, family) {
            // FlexSPI1, 10xx
            (
                FlexSpi::FlexSpi1,
                Family::Imxrt1010
                | Family::Imxrt1015
                | Family::Imxrt1020
                | Family::Imxrt1040
                | Family::Imxrt1050
                | Family::Imxrt1060
                | Family::Imxrt1064,
            ) => Some(0x6000_0000),
            // FlexSPI2 not available on 10xx families
            (
                FlexSpi::FlexSpi2,
                Family::Imxrt1010 | Family::Imxrt1015 | Family::Imxrt1020 | Family::Imxrt1050,
            ) => None,
            // FlexSPI 2 available on 10xx families
            (FlexSpi::FlexSpi2, Family::Imxrt1040 | Family::Imxrt1060 | Family::Imxrt1064) => {
                Some(0x7000_0000)
            }
            // 11xx support
            (FlexSpi::FlexSpi1, Family::Imxrt1160) => Some(0x3000_0000),
            (FlexSpi::FlexSpi2, Family::Imxrt1160) => Some(0x6000_0000),
            (FlexSpi::FlexSpi1, Family::Imxrt1170) => Some(0x3000_0000),
            (FlexSpi::FlexSpi2, Family::Imxrt1170) => Some(0x6000_0000),
            (FlexSpi::FlexSpi1, Family::Imxrt1180) => Some(0x2800_0000),
            (FlexSpi::FlexSpi2, Family::Imxrt1180) => Some(0x0400_0000),
        }
    }
    fn supported_for_family(self, family: Family) -> bool {
        self.start_address(family).is_some()
    }
}

impl Display for Memory {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            Self::Flash => f.write_str("FLASH"),
            Self::Itcm => f.write_str("ITCM"),
            Self::Dtcm => f.write_str("DTCM"),
            Self::Ocram => f.write_str("OCRAM"),
        }
    }
}

/// Define an alias for `name` that maps to a memory block named `placement`.
fn region_alias(output: &mut dyn Write, name: &str, placement: Memory) -> io::Result<()> {
    writeln!(output, "REGION_ALIAS(\"REGION_{name}\", {placement});")
}

#[derive(Debug, Clone, PartialEq, Eq)]
struct FlashOpts {
    size: usize,
    offset: u32,
    flexspi: FlexSpi,
}

impl FlashOpts {
    /// Produce the flash address of the image within
    /// FlexSPI memory.
    fn flash_origin(&self, family: Family) -> Option<u32> {
        self.flexspi
            .start_address(family)
            .map(|start_address| start_address + self.offset)
    }

    /// A bootable image (with the boot header) isn't offset
    /// in flash.
    fn is_boot_image(&self) -> bool {
        self.offset == 0
    }
}

#[derive(Debug, Clone, PartialEq, Eq)]
struct EnvOverride {
    default: usize,
    env: Option<String>,
}

impl EnvOverride {
    const fn new(default: usize) -> Self {
        Self { default, env: None }
    }
    fn set_env_key(&mut self, key: String) {
        self.env = Some(key);
    }
    fn read(&self) -> Result<usize, Box<dyn std::error::Error>> {
        if let Some(env) = &self.env {
            // If the user sets multiple environment variables for the same runtime
            // property (like stack, heap), we will only re-run when the variable
            // we care about changes. An example might help:
            //
            //      let mut bldr = RuntimeBuilder::from_flexspi(/* ... */);
            //      bldr.stack_size_env_override("COMMON_STACK");
            //      if special_condition() {
            //          bldr.stack_size_env_override("SPECIAL_STACK");
            //      }
            //
            // If we take the branch, then we re-run the build if SPECIAL_STACK
            // changes. Otherwise, we re-run if COMMON_STACK changes.
            //
            // I previously put this into `set_env_key`. That would mean we re-run
            // the build if _either_ enviroment variable changes. But then I thought
            // about the user who writes their build script like
            //
            //      if special_condition() {
            //          bldr.stack_size_env_override("SPECIAL_STACK");
            //      } else {
            //          bldr.stack_size_env_override("COMMON_STACK");
            //      }
            //
            // and how that would introduce different re-run behavior than the first
            // example, even though the variable selection is the same. Coupling the
            // re-run behavior to the variable selection behavior seems less surprising.
            println!("cargo:rerun-if-env-changed={env}");
        }

        if let Some(val) = self.env.as_ref().and_then(|key| env::var(key).ok()) {
            let val = if val.ends_with('k') || val.ends_with('K') {
                val[..val.len() - 1].parse::<usize>()? * 1024
            } else {
                val.parse::<usize>()?
            };
            Ok(val)
        } else {
            Ok(self.default)
        }
    }
}

/// Builder for the i.MX RT runtime.
///
/// `RuntimeBuilder` let you assign sections to memory regions. It also lets
/// you partition FlexRAM DTCM/ITCM/OCRAM. Call [`build()`](RuntimeBuilder::build) to commit the
/// runtime configuration.
///
/// # Behaviors
///
/// The implementation tries to place the stack in the lowest-possible memory addresses.
/// This means the stack will grow down into reserved memory below DTCM and OCRAM for most
/// chip families. The outlier is the 1170, where the stack will grow into OCRAM backdoor for
/// the CM4 coprocessor. Be careful here...
///
/// Similarly, the implementation tries to place the heap in the highest-possible memory
/// addresses. This means the heap will grow up into reserved memory above DTCM and OCRAM
/// for most chip families.
///
/// The vector table requires a 1024-byte alignment. The vector table's placement is prioritized
/// above all other sections, except the stack. If placing the stack and vector table in the
/// same section (which is the default behavior), consider keeping the stack size as a multiple
/// of 1 KiB to minimize internal fragmentation.
///
/// # Default values
///
/// The example below demonstrates the default `RuntimeBuilder` memory placements,
/// stack sizes, and heap sizes.
///
/// ```
/// use imxrt_rt::{Family, RuntimeBuilder, Memory};
///
/// const FLASH_SIZE: usize = 16 * 1024;
/// let family = Family::Imxrt1060;
///
/// let mut b = RuntimeBuilder::from_flexspi(family, FLASH_SIZE);
/// // FlexRAM banks represent default fuse values.
/// b.flexram_banks(family.default_flexram_banks());
/// b.text(Memory::Itcm);    // Copied from flash.
/// b.rodata(Memory::Ocram); // Copied from flash.
/// b.data(Memory::Ocram);   // Copied from flash.
/// b.vectors(Memory::Dtcm); // Copied from flash.
/// b.bss(Memory::Ocram);
/// b.uninit(Memory::Ocram);
/// b.stack(Memory::Dtcm);
/// b.stack_size(8 * 1024);  // 8 KiB stack.
/// b.heap(Memory::Dtcm);    // Heap in DTCM...
/// b.heap_size(0);          // ...but no space given to the heap.
///
/// assert_eq!(b, RuntimeBuilder::from_flexspi(family, FLASH_SIZE));
/// ```
///
/// # Environment overrides
///
/// Certain memory regions, like the stack and heap, can be sized using environment
/// variables. As the provider of the runtime, you can use `*_env_override` methods
/// to select the environment variable(s) that others may use to set the size, in bytes,
/// for these memory regions.
///
/// The rest of this section describes how environment variables interact with other
/// methods on this builder. Although the examples use stack size, the concepts apply
/// to all regions that can be sized with environment variables.
///
/// ```no_run
/// # use imxrt_rt::{Family, RuntimeBuilder, Memory};
/// # const FLASH_SIZE: usize = 16 * 1024;
/// # let family = Family::Imxrt1060;
/// RuntimeBuilder::from_flexspi(family, FLASH_SIZE)
///     .stack_size_env_override("YOUR_STACK_SIZE")
///     // ...
///     # .build().unwrap();
/// ```
///
/// In the above example, if a user set an environment variable `YOUR_STACK_SIZE=1024`, then
/// the runtime's stack size is 1024. Otherwise, the stack size is the default stack size.
///
/// > As a convenience, a user can use a `k` or `K` suffix to specify multiples of 1024 bytes.
/// > For example, the environment variables `YOUR_STACK_SIZE=4k` and `YOUR_STACK_SIZE=4K` are
/// > each equivalent to `YOUR_STACK_SIZE=4096`.
///
/// ```no_run
/// # use imxrt_rt::{Family, RuntimeBuilder, Memory};
/// # const FLASH_SIZE: usize = 16 * 1024;
/// # let family = Family::Imxrt1060;
/// RuntimeBuilder::from_flexspi(family, FLASH_SIZE)
///     .stack_size_env_override("YOUR_STACK_SIZE")
///     .stack_size(2048)
///     // ...
///     # .build().unwrap();
///
/// RuntimeBuilder::from_flexspi(family, FLASH_SIZE)
///     .stack_size(2048)
///     .stack_size_env_override("YOUR_STACK_SIZE")
///     // ...
///     # .build().unwrap();
/// ```
///
/// In the above example, the two builders produce the same runtime. The builder
/// selects the stack size from the environment variable, if available. Otherwise,
/// the stack size is 2048 bytes. The call order is irrelevant, since the builder
/// doesn't consult the environment until you invoke [`build()`](Self::build).
///
/// ```no_run
/// # use imxrt_rt::{Family, RuntimeBuilder, Memory};
/// # const FLASH_SIZE: usize = 16 * 1024;
/// # let family = Family::Imxrt1060;
/// RuntimeBuilder::from_flexspi(family, FLASH_SIZE)
///     .stack_size_env_override("INVALIDATED")
///     .stack_size_env_override("YOUR_STACK_SIZE")
///     // ...
///     # .build().unwrap();
/// ````
///
/// In the above example, `YOUR_STACK_SIZE` invalidates the call with `INVALIDATED`.
/// Therefore, `YOUR_STACK_SIZE` controls the stack size, if set. Otherwise, the stack
/// size is the default stack size.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct RuntimeBuilder {
    family: Family,
    flexram_banks: FlexRamBanks,
    text: Memory,
    rodata: Memory,
    data: Memory,
    vectors: Memory,
    bss: Memory,
    uninit: Memory,
    stack: Memory,
    stack_size: EnvOverride,
    heap: Memory,
    heap_size: EnvOverride,
    flash_opts: Option<FlashOpts>,
    linker_script_name: String,
}

const DEFAULT_LINKER_SCRIPT_NAME: &str = "imxrt-link.x";

impl RuntimeBuilder {
    /// Creates a runtime that can execute and load contents from
    /// FlexSPI flash.
    ///
    /// `flash_size` is the size of your flash component, in bytes.
    pub fn from_flexspi(family: Family, flash_size: usize) -> Self {
        Self {
            family,
            flexram_banks: family.default_flexram_banks(),
            text: Memory::Itcm,
            rodata: Memory::Ocram,
            data: Memory::Ocram,
            vectors: Memory::Dtcm,
            bss: Memory::Ocram,
            uninit: Memory::Ocram,
            stack: Memory::Dtcm,
            stack_size: EnvOverride::new(8 * 1024),
            heap: Memory::Dtcm,
            heap_size: EnvOverride::new(0),
            flash_opts: Some(FlashOpts {
                size: flash_size,
                offset: 0,
                flexspi: FlexSpi::family_default(family),
            }),
            linker_script_name: DEFAULT_LINKER_SCRIPT_NAME.into(),
        }
    }

    /// Allocate a flash partition for this program to be booted by your software.
    ///
    /// `partition_size` is the size of the flash allocation, in bytes, for this
    /// program. `partition_offset` describes the byte offset where the partition
    /// starts. The offset is from the start of the FlexSPI memory region.
    ///
    /// The program constructed at this flash location cannot be booted by NXP's boot
    /// ROM. You should bring your own software to execute this program. Note that
    /// [the runtime behaviors](RuntimeBuilder) ensure that the vector table is placed
    /// in flash at the given `partition_offset`.
    ///
    /// To compute a partition offset from two absolute flash addresses, use
    /// [`Family::flexspi_start_addr`] to learn the FlexSPI starting address.
    pub fn in_flash(family: Family, partition_size: usize, partition_offset: u32) -> Self {
        Self {
            family,
            flexram_banks: family.default_flexram_banks(),
            text: Memory::Itcm,
            rodata: Memory::Ocram,
            data: Memory::Ocram,
            vectors: Memory::Dtcm,
            bss: Memory::Ocram,
            uninit: Memory::Ocram,
            stack: Memory::Dtcm,
            stack_size: EnvOverride::new(8 * 1024),
            heap: Memory::Dtcm,
            heap_size: EnvOverride::new(0),
            flash_opts: Some(FlashOpts {
                size: partition_size,
                offset: partition_offset,
                flexspi: FlexSpi::family_default(family),
            }),
            linker_script_name: DEFAULT_LINKER_SCRIPT_NAME.into(),
        }
    }
    /// Set the FlexRAM bank allocation.
    ///
    /// Use this to customize the sizes of DTCM, ITCM, and OCRAM.
    /// See the `FlexRamBanks` documentation for requirements on the
    /// bank allocations.
    pub fn flexram_banks(&mut self, flexram_banks: FlexRamBanks) -> &mut Self {
        self.flexram_banks = flexram_banks;
        self
    }
    /// Set the memory placement for code.
    pub fn text(&mut self, memory: Memory) -> &mut Self {
        self.text = memory;
        self
    }
    /// Set the memory placement for read-only data.
    pub fn rodata(&mut self, memory: Memory) -> &mut Self {
        self.rodata = memory;
        self
    }
    /// Set the memory placement for mutable data.
    pub fn data(&mut self, memory: Memory) -> &mut Self {
        self.data = memory;
        self
    }
    /// Set the memory placement for the vector table.
    pub fn vectors(&mut self, memory: Memory) -> &mut Self {
        self.vectors = memory;
        self
    }
    /// Set the memory placement for zero-initialized data.
    pub fn bss(&mut self, memory: Memory) -> &mut Self {
        self.bss = memory;
        self
    }
    /// Set the memory placement for uninitialized data.
    pub fn uninit(&mut self, memory: Memory) -> &mut Self {
        self.uninit = memory;
        self
    }
    /// Set the memory placement for stack memory.
    pub fn stack(&mut self, memory: Memory) -> &mut Self {
        self.stack = memory;
        self
    }
    /// Set the size, in bytes, of the stack.
    pub fn stack_size(&mut self, bytes: usize) -> &mut Self {
        self.stack_size.default = bytes;
        self
    }
    /// Let end users override the stack size using an environment variable.
    ///
    /// See the [environment overrides](Self#environment-overrides) documentation
    /// for more information.
    pub fn stack_size_env_override(&mut self, key: impl AsRef<str>) -> &mut Self {
        self.stack_size.set_env_key(key.as_ref().into());
        self
    }
    /// Set the memory placement for the heap.
    ///
    /// Note that the default heap has no size. Use [`heap_size`](Self::heap_size)
    /// to allocate space for a heap.
    pub fn heap(&mut self, memory: Memory) -> &mut Self {
        self.heap = memory;
        self
    }
    /// Set the size, in bytes, of the heap.
    pub fn heap_size(&mut self, bytes: usize) -> &mut Self {
        self.heap_size.default = bytes;
        self
    }
    /// Let end users override the heap size using an environment variable.
    ///
    /// See the [environment overrides](Self#environment-overrides) documentation
    /// for more information.
    pub fn heap_size_env_override(&mut self, key: impl AsRef<str>) -> &mut Self {
        self.heap_size.set_env_key(key.as_ref().into());
        self
    }
    /// Set the FlexSPI peripheral that interfaces flash.
    ///
    /// See the [`FlexSpi`] to understand the default values.
    /// If this builder is not configuring a flash-loaded runtime, this
    /// call is silently ignored.
    pub fn flexspi(&mut self, peripheral: FlexSpi) -> &mut Self {
        if let Some(flash_opts) = &mut self.flash_opts {
            flash_opts.flexspi = peripheral;
        }
        self
    }

    /// Set the name of the linker script file.
    ///
    /// You can use this to customize the linker script name for your users.
    /// See the [crate-level documentation](crate#linker-script) for more
    /// information.
    pub fn linker_script_name(&mut self, name: &str) -> &mut Self {
        self.linker_script_name = name.into();
        self
    }

    /// Commit the runtime configuration.
    ///
    /// `build()` ensures that the generated linker script is available to the
    /// linker.
    ///
    /// # Errors
    ///
    /// The implementation ensures that your chip can support the FlexRAM bank
    /// allocation. An invalid allocation is signaled by an error.
    ///
    /// Returns an error if any of the following sections are placed in flash:
    ///
    /// - data
    /// - vectors
    /// - bss
    /// - uninit
    /// - stack
    /// - heap
    ///
    /// The implementation may rely on the _linker_ to signal other errors.
    /// For example, suppose a runtime configuration with no ITCM banks. If a
    /// section is placed in ITCM, that error could be signaled here, or through
    /// the linker. No matter the error path, the implementation ensures that there
    /// will be an error.
    pub fn build(&self) -> Result<(), Box<dyn std::error::Error>> {
        // Since `build` is called from a build script, the output directory
        // represents the path to the _user's_ crate.
        let out_dir = PathBuf::from(env::var("OUT_DIR")?);
        println!("cargo:rustc-link-search={}", out_dir.display());

        // The main linker script expects to INCLUDE this file. This file
        // uses region aliases to associate region names to actual memory
        // regions (see the Memory enum).
        let mut in_memory = Vec::new();
        self.write_linker_script(&mut in_memory)?;
        fs::write(out_dir.join(&self.linker_script_name), &in_memory)?;
        Ok(())
    }

    /// Write the generated linker script into the provided writer.
    ///
    /// Use this if you want more control over where the generated linker script
    /// ends up. Otherwise, you should prefer [`build()`](Self::build) for an
    /// easier experience.
    ///
    /// Unlike `build()`, this method does not ensure that the linker script is
    /// available to the linker. Additionally, this method does not consider
    /// the value set by [`linker_script_name`](Self::linker_script_name).
    ///
    /// # Errors
    ///
    /// See [`build()`](Self::build) to understand the possible errors.
    fn write_linker_script(
        &self,
        writer: &mut dyn Write,
    ) -> Result<(), Box<dyn std::error::Error>> {
        self.check_configurations()?;

        if let Some(flash_opts) = &self.flash_opts {
            write_flash_memory_map(writer, self.family, flash_opts, &self.flexram_banks)?;

            if flash_opts.is_boot_image() {
                let boot_header_x = match self.family {
                    Family::Imxrt1010
                    | Family::Imxrt1015
                    | Family::Imxrt1020
                    | Family::Imxrt1040
                    | Family::Imxrt1050
                    | Family::Imxrt1060
                    | Family::Imxrt1064
                    | Family::Imxrt1160
                    | Family::Imxrt1170 => include_bytes!("host/imxrt-boot-header.x").as_slice(),
                    Family::Imxrt1180 => include_bytes!("host/imxrt-boot-header-1180.x").as_slice(),
                };
                writer.write_all(boot_header_x)?;
            }
        } else {
            write_ram_memory_map(writer, self.family, &self.flexram_banks)?;
        }

        #[cfg(feature = "device")]
        writeln!(writer, "INCLUDE device.x")?;

        // Keep these alias names in sync with the primary linker script.
        // The main linker script uses these region aliases for placing
        // sections. Then, the user specifies the actual placement through
        // the builder. This saves us the step of actually generating SECTION
        // commands.
        region_alias(writer, "TEXT", self.text)?;
        region_alias(writer, "VTABLE", self.vectors)?;
        region_alias(writer, "RODATA", self.rodata)?;
        region_alias(writer, "DATA", self.data)?;
        region_alias(writer, "BSS", self.bss)?;
        region_alias(writer, "UNINIT", self.uninit)?;

        region_alias(writer, "STACK", self.stack)?;
        region_alias(writer, "HEAP", self.heap)?;
        // Used in the linker script and / or target code.
        writeln!(writer, "__stack_size = {:#010X};", self.stack_size.read()?)?;
        writeln!(writer, "__heap_size = {:#010X};", self.heap_size.read()?)?;

        if self.flash_opts.is_some() {
            // Runtime will see different VMA and LMA, and copy the sections.
            region_alias(writer, "LOAD_VTABLE", Memory::Flash)?;
            region_alias(writer, "LOAD_TEXT", Memory::Flash)?;
            region_alias(writer, "LOAD_RODATA", Memory::Flash)?;
            region_alias(writer, "LOAD_DATA", Memory::Flash)?;
        } else {
            // When the VMA and LMA are equal, the runtime performs no copies.
            region_alias(writer, "LOAD_VTABLE", self.vectors)?;
            region_alias(writer, "LOAD_TEXT", self.text)?;
            region_alias(writer, "LOAD_RODATA", self.rodata)?;
            region_alias(writer, "LOAD_DATA", self.data)?;
        }

        // Referenced in target code.
        writeln!(
            writer,
            "__flexram_config = {:#010X};",
            self.flexram_banks.config(self.family)
        )?;
        // The target runtime looks at this value to predicate some pre-init instructions.
        // Could be helpful for binary identification, but it's an undocumented feature.
        writeln!(writer, "__imxrt_rt_v0.2 = {};", self.family.id(),)?;

        let link_x = include_bytes!("host/imxrt-link.x");
        writer.write_all(link_x)?;

        Ok(())
    }

    /// Implement i.MX RT specific sanity checks.
    ///
    /// This might not check everything! If the linker may detect a condition, we'll
    /// let the linker do that.
    fn check_configurations(&self) -> Result<(), String> {
        if self.family.flexram_bank_count() < self.flexram_banks.bank_count() {
            return Err(format!(
                "Chip {:?} only has {} total FlexRAM banks. Cannot allocate {:?}, a total of {} banks",
                self.family,
                self.family.flexram_bank_count(),
                self.flexram_banks,
                self.flexram_banks.bank_count()
            ));
        }
        if self.flexram_banks.ocram < self.family.bootrom_ocram_banks() {
            return Err(format!(
                "Chip {:?} requires at least {} OCRAM banks for the bootloader ROM",
                self.family,
                self.family.bootrom_ocram_banks()
            ));
        }
        if let Some(flash_opts) = &self.flash_opts
            && !flash_opts.flexspi.supported_for_family(self.family)
        {
            return Err(format!(
                "Chip {:?} does not support {:?}",
                self.family, flash_opts.flexspi
            ));
        }

        fn prevent_flash(name: &str, memory: Memory) -> Result<(), String> {
            if memory == Memory::Flash {
                Err(format!("Section '{name}' cannot be placed in flash"))
            } else {
                Ok(())
            }
        }
        macro_rules! prevent_flash {
            ($sec:ident) => {
                prevent_flash(stringify!($sec), self.$sec)
            };
        }

        prevent_flash!(data)?;
        prevent_flash!(vectors)?;
        prevent_flash!(bss)?;
        prevent_flash!(uninit)?;
        prevent_flash!(stack)?;
        prevent_flash!(heap)?;

        Ok(())
    }
}

/// Write RAM-like memory blocks.
///
/// Skips a section if there's no FlexRAM block allocated. If a user references one
/// of this skipped sections, linking fails.
fn write_flexram_memories(
    output: &mut dyn Write,
    family: Family,
    flexram_banks: &FlexRamBanks,
) -> io::Result<()> {
    if flexram_banks.itcm > 0 {
        let (itcm_start, itcm_size) = family.itcm_start_size(flexram_banks.itcm);
        writeln!(
            output,
            "ITCM (RWX) : ORIGIN = {itcm_start:#X}, LENGTH = {itcm_size:#X}"
        )?;
    }
    if flexram_banks.dtcm > 0 {
        writeln!(
            output,
            "DTCM (RWX) : ORIGIN = 0x20000000, LENGTH = {:#X}",
            flexram_banks.dtcm * family.flexram_bank_size(),
        )?;
    }

    let ocram_size =
        flexram_banks.ocram * family.flexram_bank_size() + family.dedicated_ocram_size();
    if ocram_size > 0 {
        writeln!(
            output,
            "OCRAM (RWX) : ORIGIN = {:#X}, LENGTH = {:#X}",
            family.ocram_start(),
            ocram_size,
        )?;
    }
    Ok(())
}

/// Generate a linker script MEMORY command that includes a FLASH block.
fn write_flash_memory_map(
    output: &mut dyn Write,
    family: Family,
    flash_opts: &FlashOpts,
    flexram_banks: &FlexRamBanks,
) -> io::Result<()> {
    writeln!(
        output,
        "/* Memory map for '{:?}' with custom flash length {}. */",
        family, flash_opts.size
    )?;
    writeln!(output, "MEMORY {{")?;
    writeln!(
        output,
        "FLASH (RX) : ORIGIN = {:#X}, LENGTH = {:#X}",
        flash_opts.flash_origin(family).expect("Already checked"),
        flash_opts.size
    )?;
    write_flexram_memories(output, family, flexram_banks)?;
    writeln!(output, "}}")?;
    writeln!(output, "__fcb_offset = {:#X};", family.fcb_offset())?;
    Ok(())
}

/// Generate a linker script MEMORY command that supports RAM execution.
///
/// It's like [`write_flash_memory_map`], but it doesn't include the flash
/// important tidbits.
fn write_ram_memory_map(
    output: &mut dyn Write,
    family: Family,
    flexram_banks: &FlexRamBanks,
) -> io::Result<()> {
    writeln!(
        output,
        "/* Memory map for '{family:?}' that executes from RAM. */",
    )?;
    writeln!(output, "MEMORY {{")?;
    write_flexram_memories(output, family, flexram_banks)?;
    writeln!(output, "}}")?;
    Ok(())
}

/// i.MX RT chip family.
///
/// Chip families are designed by reference manuals and produce categories.
/// Supply this to a [`RuntimeBuilder`] in order to check runtime configurations.
#[non_exhaustive]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Family {
    Imxrt1010,
    Imxrt1015,
    Imxrt1020,
    Imxrt1040,
    Imxrt1050,
    Imxrt1060,
    Imxrt1064,
    Imxrt1160,
    Imxrt1170,
    Imxrt1180,
}

/// Adding a new MCU? You'll probably need to update
/// these methods.
impl Family {
    /// Family identifier.
    ///
    /// These values may be stored in the image and observe by the runtime
    /// initialzation routine. Make sure these numbers are kept in sync with
    /// any hard-coded values.
    const fn id(self) -> u32 {
        match self {
            Family::Imxrt1010 => 0x1010,
            Family::Imxrt1015 => 0x1015,
            Family::Imxrt1020 => 0x1020,
            Family::Imxrt1040 => 0x1040,
            Family::Imxrt1050 => 0x1050,
            Family::Imxrt1060 => 0x1060,
            Family::Imxrt1064 => 0x1064,
            Family::Imxrt1160 => 0x1160,
            Family::Imxrt1170 => 0x1170,
            Family::Imxrt1180 => 0x1180,
        }
    }
    /// How many FlexRAM banks are available?
    pub const fn flexram_bank_count(self) -> u32 {
        match self {
            Family::Imxrt1010 | Family::Imxrt1015 => 4,
            Family::Imxrt1020 => 8,
            Family::Imxrt1040 | Family::Imxrt1050 | Family::Imxrt1060 | Family::Imxrt1064 => 16,
            // No ECC support; treating all banks as equal.
            Family::Imxrt1160 | Family::Imxrt1170 => 16,
            Family::Imxrt1180 => 2,
        }
    }
    /// How large (bytes) is each FlexRAM bank?
    const fn flexram_bank_size(self) -> u32 {
        match self {
            Family::Imxrt1010
            | Family::Imxrt1015
            | Family::Imxrt1020
            | Family::Imxrt1040
            | Family::Imxrt1050
            | Family::Imxrt1060
            | Family::Imxrt1064
            | Family::Imxrt1160
            | Family::Imxrt1170 => 32 * 1024,
            Family::Imxrt1180 => 128 * 1024,
        }
    }
    /// How many OCRAM banks does the boot ROM need?
    const fn bootrom_ocram_banks(self) -> u32 {
        match self {
            Family::Imxrt1010
            | Family::Imxrt1015
            | Family::Imxrt1020
            | Family::Imxrt1040
            | Family::Imxrt1050 => 1,
            // 9.5.1. memory maps point at OCRAM2.
            Family::Imxrt1060 | Family::Imxrt1064 => 0,
            // Boot ROM uses dedicated OCRAM1.
            Family::Imxrt1160 | Family::Imxrt1170 | Family::Imxrt1180 => 0,
        }
    }
    /// Where's the FlexSPI configuration bank located?
    fn fcb_offset(self) -> usize {
        match self {
            Family::Imxrt1010 | Family::Imxrt1160 | Family::Imxrt1170 | Family::Imxrt1180 => 0x400,
            Family::Imxrt1015
            | Family::Imxrt1020
            | Family::Imxrt1040
            | Family::Imxrt1050
            | Family::Imxrt1060
            | Family::Imxrt1064 => 0x000,
        }
    }

    /// Where does the OCRAM region begin?
    ///
    /// This includes dedicated any OCRAM regions, if any exist for the chip.
    fn ocram_start(self) -> u32 {
        match self {
            // 256 KiB offset from the OCRAM M4 backdoor.
            Family::Imxrt1170 => 0x2024_0000,
            // Using the alias regions, assuming ECC is disabled.
            // The two alias regions, plus the ECC region, provide
            // the *contiguous* 256 KiB of dedicated OCRAM.
            Family::Imxrt1160 => 0x2034_0000,
            // Skip the first 16 KiB, "cannot be safely used by application images".
            Family::Imxrt1180 => 0x2048_4000,
            // Either starts the FlexRAM OCRAM banks, or the
            // dedicated OCRAM regions (for supported devices).
            Family::Imxrt1010
            | Family::Imxrt1015
            | Family::Imxrt1020
            | Family::Imxrt1040
            | Family::Imxrt1050
            | Family::Imxrt1060
            | Family::Imxrt1064 => 0x2020_0000,
        }
    }

    /// What's the size, in bytes, of the dedicated OCRAM section?
    ///
    /// This isn't supported by all chips.
    const fn dedicated_ocram_size(self) -> u32 {
        match self {
            Family::Imxrt1010
            | Family::Imxrt1015
            | Family::Imxrt1020
            | Family::Imxrt1040
            | Family::Imxrt1050 => 0,
            Family::Imxrt1060 | Family::Imxrt1064 => 512 * 1024,
            // - Two dedicated OCRAMs
            // - One FlexRAM OCRAM EC region that's OCRAM when ECC is disabled.
            Family::Imxrt1160 => (2 * 64 + 128) * 1024,
            // - Two dedicated OCRAMs
            // - Two dedicated OCRAM ECC regions that aren't used for ECC
            // - One FlexRAM OCRAM ECC region that's strictly OCRAM, without ECC
            Family::Imxrt1170 => (2 * 512 + 2 * 64 + 128) * 1024,
            // OCRAM1 (512k), OCRAM2 (256k), 16k reserved as a ROM patch area
            Family::Imxrt1180 => (512 + 256 - 16) * 1024,
        }
    }

    /// Returns the default FlexRAM bank allocations for this chip.
    ///
    /// The default values represent the all-zero fuse values.
    pub fn default_flexram_banks(self) -> FlexRamBanks {
        match self {
            Family::Imxrt1010 | Family::Imxrt1015 => FlexRamBanks {
                ocram: 2,
                itcm: 1,
                dtcm: 1,
            },
            Family::Imxrt1020 => FlexRamBanks {
                ocram: 4,
                itcm: 2,
                dtcm: 2,
            },
            Family::Imxrt1040 | Family::Imxrt1050 | Family::Imxrt1060 | Family::Imxrt1064 => {
                FlexRamBanks {
                    ocram: 8,
                    itcm: 4,
                    dtcm: 4,
                }
            }
            Family::Imxrt1160 | Family::Imxrt1170 => FlexRamBanks {
                ocram: 0,
                itcm: 8,
                dtcm: 8,
            },
            Family::Imxrt1180 => FlexRamBanks {
                ocram: 0,
                itcm: 1,
                dtcm: 1,
            },
        }
    }

    /// Returns the start and size of the ITCM memory region.
    const fn itcm_start_size(self, itcm_banks: u32) -> (u32, u32) {
        let mut itcm_size = itcm_banks * self.flexram_bank_size();
        let itcm_start = match self {
            Family::Imxrt1010
            | Family::Imxrt1015
            | Family::Imxrt1020
            | Family::Imxrt1040
            | Family::Imxrt1050
            | Family::Imxrt1060
            | Family::Imxrt1064
            | Family::Imxrt1160
            | Family::Imxrt1170 => {
                // Establish a reservation for null pointers.
                // Note that this reservation is the minimum
                // size of an MPU region.
                itcm_size = itcm_size.saturating_sub(32);
                32
            }
            Family::Imxrt1180 => 0x10000000 - itcm_size,
        };
        (itcm_start, itcm_size)
    }
}

/// If you're adding a new MCU family, you probably
/// don't need to change these methods.
impl Family {
    /// Returns the starting address for the given `flexspi` instance.
    ///
    /// If a FlexSPI instance isn't available for this family, the return
    /// is `None`. Otherwise, the return is the starting address in the
    /// MCU's memory map.
    ///
    /// ```
    /// use imxrt_rt::{Family::*, FlexSpi::*};
    ///
    /// assert_eq!(Imxrt1060.flexspi_start_addr(FlexSpi1), Some(0x6000_0000));
    /// assert!(Imxrt1010.flexspi_start_addr(FlexSpi2).is_none());
    /// ```
    pub fn flexspi_start_addr(self, flexspi: FlexSpi) -> Option<u32> {
        flexspi.start_address(self)
    }
}

/// FlexRAM bank allocations.
///
/// Depending on your device, you may need a non-zero number of
/// OCRAM banks to support the boot ROM. Consult your processor's
/// reference manual for more information.
///
/// You should keep the sum of all banks below or equal to the
/// total number of banks supported by your device. Unallocated memory
/// banks are disabled.
///
/// Banks are typically 32KiB large.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct FlexRamBanks {
    /// How many banks are allocated for OCRAM?
    ///
    /// This may need to be non-zero to support the boot ROM.
    /// Consult your reference manual.
    ///
    /// Note: these are FlexRAM OCRAM banks. Do not include any banks
    /// that would represent dedicated OCRAM; the runtime implementation
    /// allocates those automatically. In fact, if your chip includes
    /// dedicated OCRAM, you may set this to zero in order to maximize
    /// DTCM and ITCM utilization.
    pub ocram: u32,
    /// How many banks are allocated for ITCM?
    pub itcm: u32,
    /// How many banks are allocated for DTCM?
    pub dtcm: u32,
}

impl FlexRamBanks {
    /// Total FlexRAM banks.
    const fn bank_count(&self) -> u32 {
        self.ocram + self.itcm + self.dtcm
    }

    /// Produces the FlexRAM configuration.
    fn config(&self, family: Family) -> u32 {
        match family {
            Family::Imxrt1010
            | Family::Imxrt1015
            | Family::Imxrt1020
            | Family::Imxrt1040
            | Family::Imxrt1050
            | Family::Imxrt1060
            | Family::Imxrt1064
            | Family::Imxrt1160
            | Family::Imxrt1170 => self.config_gpr(),
            Family::Imxrt1180 => self.config_1180(),
        }
    }

    /// Produces the FlexRAM configuration for families using GPR17.
    fn config_gpr(&self) -> u32 {
        assert!(
            self.bank_count() <= 16,
            "Something is wrong; this should have been checked earlier."
        );

        // If a FlexRAM memory type could be allocated
        // to _all_ memory banks, these would represent
        // the configuration masks...
        const OCRAM: u32 = 0x5555_5555; // 0b01...
        const DTCM: u32 = 0xAAAA_AAAA; // 0b10...
        const ITCM: u32 = 0xFFFF_FFFF; // 0b11...

        fn mask(bank_count: u32) -> u32 {
            1u32.checked_shl(bank_count * 2)
                .map(|bit| bit - 1)
                .unwrap_or(u32::MAX)
        }

        let ocram_mask = mask(self.ocram);
        let dtcm_mask = mask(self.dtcm).checked_shl(self.ocram * 2).unwrap_or(0);
        let itcm_mask = mask(self.itcm)
            .checked_shl((self.ocram + self.dtcm) * 2)
            .unwrap_or(0);

        (OCRAM & ocram_mask) | (DTCM & dtcm_mask) | (ITCM & itcm_mask)
    }

    fn config_1180(&self) -> u32 {
        match (self.itcm, self.dtcm, self.ocram) {
            (1, 1, 0) => 0b00_u32,
            (2, 0, 0) => 0b10,
            (0, 2, 0) => 0b01,
            _ => panic!("Unsupported FlexRAM configuration"),
        }
        .checked_shl(2)
        .unwrap()
    }
}

#[cfg(test)]
mod tests {
    use crate::Memory;

    use super::{Family, FlexRamBanks, RuntimeBuilder};
    use std::{error, io};

    const MOST_FAMILIES: &[Family] = &[
        Family::Imxrt1010,
        Family::Imxrt1015,
        Family::Imxrt1020,
        Family::Imxrt1040,
        Family::Imxrt1050,
        Family::Imxrt1060,
        Family::Imxrt1064,
        Family::Imxrt1170,
        // Imxrt1180 wasn't ever tested here.
    ];
    type Error = Box<dyn error::Error>;

    #[test]
    fn flexram_config() {
        /// Testing table of banks and expected configuration mask.
        #[allow(clippy::unusual_byte_groupings)] // Spacing delimits ITCM / DTCM / OCRAM banks.
        const TABLE: &[(FlexRamBanks, u32)] = &[
            (
                FlexRamBanks {
                    ocram: 16,
                    dtcm: 0,
                    itcm: 0,
                },
                0x55555555,
            ),
            (
                FlexRamBanks {
                    ocram: 0,
                    dtcm: 16,
                    itcm: 0,
                },
                0xAAAAAAAA,
            ),
            (
                FlexRamBanks {
                    ocram: 0,
                    dtcm: 0,
                    itcm: 16,
                },
                0xFFFFFFFF,
            ),
            (
                FlexRamBanks {
                    ocram: 0,
                    dtcm: 0,
                    itcm: 0,
                },
                0,
            ),
            (
                FlexRamBanks {
                    ocram: 1,
                    dtcm: 1,
                    itcm: 1,
                },
                0b11_10_01,
            ),
            (
                FlexRamBanks {
                    ocram: 3,
                    dtcm: 3,
                    itcm: 3,
                },
                0b111111_101010_010101,
            ),
            (
                FlexRamBanks {
                    ocram: 5,
                    dtcm: 5,
                    itcm: 5,
                },
                0b1111111111_1010101010_0101010101,
            ),
            (
                FlexRamBanks {
                    ocram: 1,
                    dtcm: 1,
                    itcm: 14,
                },
                0b1111111111111111111111111111_10_01,
            ),
            (
                FlexRamBanks {
                    ocram: 1,
                    dtcm: 14,
                    itcm: 1,
                },
                0b11_1010101010101010101010101010_01,
            ),
            (
                FlexRamBanks {
                    ocram: 14,
                    dtcm: 1,
                    itcm: 1,
                },
                0b11_10_0101010101010101010101010101,
            ),
        ];

        for (banks, expected) in TABLE {
            let actual = banks.config_gpr();
            assert!(
                actual == *expected,
                "\nActual:   {actual:#034b}\nExpected: {expected:#034b}\nBanks: {banks:?}"
            );
        }
    }

    #[test]
    fn runtime_builder_default_from_flexspi() -> Result<(), Error> {
        for family in MOST_FAMILIES {
            RuntimeBuilder::from_flexspi(*family, 16 * 1024 * 1024)
                .write_linker_script(&mut io::sink())?;
        }
        Ok(())
    }

    /// Strange but currently allowed.
    #[test]
    fn runtime_builder_from_flexspi_no_flash() -> Result<(), Error> {
        RuntimeBuilder::from_flexspi(Family::Imxrt1060, 0).write_linker_script(&mut io::sink())
    }

    #[test]
    fn runtime_builder_too_many_flexram_banks() {
        let banks = FlexRamBanks {
            itcm: 32,
            dtcm: 32,
            ocram: 32,
        };
        for family in MOST_FAMILIES {
            let res = RuntimeBuilder::from_flexspi(*family, 16 * 1024)
                .flexram_banks(banks)
                .write_linker_script(&mut io::sink());
            assert!(res.is_err(), "{family:?}");
        }
    }

    #[test]
    fn runtime_builder_invalid_flash_section() {
        type Placer = fn(&mut RuntimeBuilder) -> &mut RuntimeBuilder;
        macro_rules! placement {
            ($section:ident) => {
                (|bldr| bldr.$section(Memory::Flash), stringify!($section))
            };
        }
        let placements: &[(Placer, &'static str)] = &[
            placement!(data),
            placement!(vectors),
            placement!(bss),
            placement!(uninit),
            placement!(stack),
            placement!(heap),
        ];

        for family in MOST_FAMILIES {
            for placement in placements {
                let mut bldr = RuntimeBuilder::from_flexspi(*family, 16 * 1024);
                placement.0(&mut bldr);
                let res = bldr.write_linker_script(&mut io::sink());
                assert!(res.is_err(), "{:?}, section: {}", family, placement.1);
            }
        }
    }

    #[test]
    fn itcm_start_size() {
        // Most parts have an ITCM that could touch address 0.
        // However, the implementation reserves an MPU region
        // at address 0.
        for family in MOST_FAMILIES {
            for itcm_banks in 0..=family.flexram_bank_count() {
                let (start, size) = family.itcm_start_size(itcm_banks);
                assert_eq!(start, 32);
                assert_eq!(
                    size,
                    (family.flexram_bank_size() * itcm_banks).saturating_sub(32)
                );
            }
        }

        // The 1180's ITCM never touches address 0 when the ITCM banks
        // are properly configured.
        let family = Family::Imxrt1180;
        for itcm_banks in 0..=family.flexram_bank_count() {
            let (start, size) = family.itcm_start_size(itcm_banks);
            assert_ne!(start, 0);
            assert_eq!(size, family.flexram_bank_size() * itcm_banks);
        }
    }
}