1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
#![no_std]
#![no_main]
#[rtic::app(
device = rp_pico::hal::pac,
dispatchers = [TIMER_IRQ_1]
)]
mod app {
use rp_pico::hal::{
clocks, gpio,
gpio::pin::bank0::{Gpio2, Gpio25, Gpio3},
gpio::pin::PushPullOutput,
pac,
sio::Sio,
watchdog::Watchdog,
I2C,
};
use rp_pico::XOSC_CRYSTAL_FREQ;
use core::mem::MaybeUninit;
use embedded_hal::digital::v2::{OutputPin, ToggleableOutputPin};
use fugit::RateExtU32;
use rtic_monotonics::rp2040::*;
use panic_probe as _;
type I2CBus = I2C<
pac::I2C1,
(
gpio::Pin<Gpio2, gpio::FunctionI2C>,
gpio::Pin<Gpio3, gpio::FunctionI2C>,
),
>;
#[shared]
struct Shared {}
#[local]
struct Local {
led: gpio::Pin<Gpio25, PushPullOutput>,
i2c: &'static mut I2CBus,
}
#[init(local=[
// Task local initialized resources are static
// Here we use MaybeUninit to allow for initialization in init()
// This enables its usage in driver initialization
i2c_ctx: MaybeUninit<I2CBus> = MaybeUninit::uninit()
])]
fn init(mut ctx: init::Context) -> (Shared, Local) {
// Initialize the interrupt for the RP2040 timer and obtain the token
// proving that we have.
let rp2040_timer_token = rtic_monotonics::create_rp2040_monotonic_token!();
// Configure the clocks, watchdog - The default is to generate a 125 MHz system clock
Timer::start(ctx.device.TIMER, &mut ctx.device.RESETS, rp2040_timer_token); // default rp2040 clock-rate is 125MHz
let mut watchdog = Watchdog::new(ctx.device.WATCHDOG);
let clocks = clocks::init_clocks_and_plls(
XOSC_CRYSTAL_FREQ,
ctx.device.XOSC,
ctx.device.CLOCKS,
ctx.device.PLL_SYS,
ctx.device.PLL_USB,
&mut ctx.device.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
// Init LED pin
let sio = Sio::new(ctx.device.SIO);
let gpioa = rp_pico::Pins::new(
ctx.device.IO_BANK0,
ctx.device.PADS_BANK0,
sio.gpio_bank0,
&mut ctx.device.RESETS,
);
let mut led = gpioa.led.into_push_pull_output();
led.set_low().unwrap();
// Init I2C pins
let sda_pin = gpioa.gpio2.into_mode::<gpio::FunctionI2C>();
let scl_pin = gpioa.gpio3.into_mode::<gpio::FunctionI2C>();
// Init I2C itself, using MaybeUninit to overwrite the previously
// uninitialized i2c_ctx variable without dropping its value
// (i2c_ctx definined in init local resources above)
let i2c_tmp: &'static mut _ = ctx.local.i2c_ctx.write(I2C::i2c1(
ctx.device.I2C1,
sda_pin,
scl_pin,
100.kHz(),
&mut ctx.device.RESETS,
&clocks.system_clock,
));
// Spawn heartbeat task
heartbeat::spawn().ok();
// Return resources and timer
(Shared {}, Local { led, i2c: i2c_tmp })
}
#[task(local = [i2c, led])]
async fn heartbeat(ctx: heartbeat::Context) {
// Loop forever.
//
// It is important to remember that tasks that loop
// forever should have an `await` somewhere in that loop.
//
// Without the await, the task will never yield back to
// the async executor, which means that no other lower or
// equal priority task will be able to run.
loop {
// Flicker the built-in LED
_ = ctx.local.led.toggle();
// Congrats, you can use your i2c and have access to it here,
// now to do something with it!
// Delay for 1 second
Timer::delay(1000.millis()).await;
}
}
}
|