aboutsummaryrefslogtreecommitdiff
path: root/rtic-macros/src/codegen/bindings/riscv_slic.rs
blob: f2dc9edced165c27f93b5ca4bc23f1e0ec78ca6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
use crate::{
    analyze::Analysis as CodegenAnalysis,
    syntax::{
        analyze::Analysis as SyntaxAnalysis,
        ast::{App, Dispatcher},
    },
};
use proc_macro2::{Span, TokenStream as TokenStream2};
use quote::quote;
use std::{collections::HashSet, vec};
use syn::{parse, Attribute, Ident};

/// Utility function to get the SLIC interrupt module.
pub fn interrupt_ident() -> Ident {
    let span = Span::call_site();
    Ident::new("SoftwareInterrupt", span)
}

pub fn interrupt_mod(_app: &App) -> TokenStream2 {
    let interrupt = interrupt_ident();
    quote!(slic::#interrupt)
}

/// This macro implements the [`rtic::Mutex`] trait for shared resources using the SLIC.
#[allow(clippy::too_many_arguments)]
pub fn impl_mutex(
    _app: &App,
    _analysis: &CodegenAnalysis,
    cfgs: &[Attribute],
    resources_prefix: bool,
    name: &Ident,
    ty: &TokenStream2,
    ceiling: u8,
    ptr: &TokenStream2,
) -> TokenStream2 {
    let path = if resources_prefix {
        quote!(shared_resources::#name)
    } else {
        quote!(#name)
    };

    quote!(
        #(#cfgs)*
        impl<'a> rtic::Mutex for #path<'a> {
            type T = #ty;

            #[inline(always)]
            fn lock<RTIC_INTERNAL_R>(&mut self, f: impl FnOnce(&mut #ty) -> RTIC_INTERNAL_R) -> RTIC_INTERNAL_R {

                const CEILING: u8 = #ceiling;

                unsafe {
                    rtic::export::lock(#ptr, CEILING, f)
                }
            }
        }
    )
}

/// This macro is used to define additional compile-time assertions in case the platform needs it.
/// The Cortex-M implementations do not use it. Thus, we think we do not need it either.
pub fn extra_assertions(_app: &App, _analysis: &SyntaxAnalysis) -> Vec<TokenStream2> {
    vec![]
}

pub fn pre_init_preprocessing(app: &mut App, _analysis: &SyntaxAnalysis) -> parse::Result<()> {
    app.args.core = false; // RISC-V SLIC is not compatible with using core peripherals
    if !app.args.dispatchers.is_empty() {
        return Err(parse::Error::new(
            Span::call_site(),
            "this backend does not support explicit interrupt dispatchers; remove the `dispatchers` argument from `#[app]`",
        ));
    }

    // Compute the number of handlers we need to dispatch the software tasks
    let soft_priorities = app
        .software_tasks
        .iter()
        .map(|(_, task)| task.args.priority)
        .filter(|prio| *prio > 0)
        .collect::<HashSet<_>>();

    for i in 0..soft_priorities.len() {
        let dispatcher_ident = Ident::new(&format!("__RTICDispatcher{}", i), Span::call_site());
        app.args
            .dispatchers
            .insert(dispatcher_ident, Dispatcher { attrs: vec![] });
    }

    Ok(())
}

/// This macro is used to check at run-time that all the interruption dispatchers exist.
pub fn pre_init_checks(app: &App, _analysis: &SyntaxAnalysis) -> Vec<TokenStream2> {
    let mut stmts: Vec<TokenStream2> = vec![];
    let int_mod = interrupt_mod(app);

    // check that all dispatchers exists in the `slic::Interrupt` enumeration
    for name in app.args.dispatchers.keys() {
        stmts.push(quote!(let _ = #int_mod::#name;));
    }

    stmts
}

/// This macro must perform all the required operations to activate the
/// interrupt sources with their corresponding priority level.
pub fn pre_init_enable_interrupts(app: &App, analysis: &CodegenAnalysis) -> Vec<TokenStream2> {
    let mut stmts = vec![];

    // First, we reset and disable all the interrupt controllers
    stmts.push(quote!(rtic::export::clear_interrupts();));

    // Then, we set the corresponding priorities
    let interrupt_ids = analysis.interrupts.iter().map(|(p, (id, _))| (p, id));
    for (&p, name) in interrupt_ids.chain(
        app.hardware_tasks
            .values()
            .map(|task| (&task.args.priority, &task.args.binds)),
    ) {
        stmts.push(quote!(
            rtic::export::set_priority(slic::SoftwareInterrupt::#name, #p);
        ));
    }
    // Finally, we activate the interrupts
    stmts.push(quote!(rtic::export::set_interrupts();));
    stmts
}

/// Any additional checks that depend on the system architecture.
pub fn architecture_specific_analysis(app: &App, _analysis: &SyntaxAnalysis) -> parse::Result<()> {
    // Check that there are enough external interrupts to dispatch the software tasks and the timer queue handler
    let mut first = None;
    let priorities = app
        .software_tasks
        .iter()
        .map(|(name, task)| {
            first = Some(name);
            task.args.priority
        })
        .filter(|prio| *prio > 0)
        .collect::<HashSet<_>>();

    let need = priorities.len();
    let given = app.args.dispatchers.len();
    if need > given {
        let s = {
            format!(
                "not enough interrupts to dispatch \
                    all software tasks (need: {need}; given: {given})"
            )
        };

        return Err(parse::Error::new(first.unwrap().span(), s));
    }
    #[cfg(feature = "riscv-clint")]
    if app.args.backend.is_none() {
        return Err(parse::Error::new(
            Span::call_site(),
            "CLINT requires backend-specific configuration",
        ));
    }

    Ok(())
}

/// Macro to add statements to be executed at the beginning of all the interrupt handlers.
pub fn interrupt_entry(_app: &App, _analysis: &CodegenAnalysis) -> Vec<TokenStream2> {
    vec![]
}

/// Macro to add statements to be executed at the end of all the interrupt handlers.
pub fn interrupt_exit(_app: &App, _analysis: &CodegenAnalysis) -> Vec<TokenStream2> {
    vec![]
}

pub fn check_stack_overflow_before_init(
    _app: &App,
    _analysis: &CodegenAnalysis,
) -> Vec<TokenStream2> {
    vec![quote!(
        // Check for stack overflow using symbols from `risc-v-rt`.
        extern "C" {
            pub static _stack_start: u32;
            pub static _ebss: u32;
        }

        let stack_start = &_stack_start as *const _ as u32;
        let ebss = &_ebss as *const _ as u32;

        if stack_start > ebss {
            // No flip-link usage, check the SP for overflow.
            if rtic::export::read_sp() <= ebss {
                panic!("Stack overflow after allocating executors");
            }
        }
    )]
}

pub fn async_entry(
    _app: &App,
    _analysis: &CodegenAnalysis,
    _dispatcher_name: Ident,
) -> Vec<TokenStream2> {
    vec![]
}

/// Macro to define a maximum priority level for async tasks.
pub fn async_prio_limit(_app: &App, analysis: &CodegenAnalysis) -> Vec<TokenStream2> {
    let max = if let Some(max) = analysis.max_async_prio {
        quote!(#max)
    } else {
        quote!(u8::MAX) // No limit
    };

    vec![quote!(
        /// Holds the maximum priority level for use by async HAL drivers.
        #[no_mangle]
        static RTIC_ASYNC_MAX_LOGICAL_PRIO: u8 = #max;
    )]
}

pub fn handler_config(
    _app: &App,
    _analysis: &CodegenAnalysis,
    _dispatcher_name: Ident,
) -> Vec<TokenStream2> {
    vec![]
}

/// The SLIC requires us to call to the [`riscv_rtic::codegen`] macro to generate
/// the appropriate SLIC structure, interrupt enumerations, etc.
pub fn extra_modules(app: &App, _analysis: &SyntaxAnalysis) -> Vec<TokenStream2> {
    let mut stmts = vec![];

    let hw_slice: Vec<_> = app
        .hardware_tasks
        .values()
        .map(|task| &task.args.binds)
        .collect();
    let sw_slice: Vec<_> = app.args.dispatchers.keys().collect();

    let swi_slice: Vec<_> = hw_slice.iter().chain(sw_slice.iter()).collect();

    let device = &app.args.device;

    stmts.push(quote!(
        use rtic::export::riscv_slic;
    ));
    let slic = quote! {rtic::export::riscv_slic};

    match () {
        #[cfg(feature = "riscv-clint")]
        () => {
            let hart_id = &app.args.backend.as_ref().unwrap().hart_id;
            stmts.push(quote!(rtic::export::codegen!(slic = #slic, pac = #device, swi = [#(#swi_slice,)*], backend = [hart_id = #hart_id]);));
        }
        #[cfg(feature = "riscv-mecall")]
        () => {
            stmts.push(quote!(rtic::export::codegen!(slic = #slic, pac = #device, swi = [#(#swi_slice,)*]);));
        }
    }

    stmts
}