1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
|
//! An async aware MPSC channel that can be used on no-alloc systems.
use core::{
cell::UnsafeCell,
future::poll_fn,
mem::MaybeUninit,
pin::Pin,
ptr,
sync::atomic::{fence, Ordering},
task::{Poll, Waker},
};
#[doc(hidden)]
pub use critical_section;
use heapless::Deque;
use rtic_common::{
dropper::OnDrop, wait_queue::DoublyLinkedList, wait_queue::Link,
waker_registration::CriticalSectionWakerRegistration as WakerRegistration,
};
#[cfg(feature = "defmt-03")]
use crate::defmt;
type WaitQueueData = (Waker, SlotPtr);
type WaitQueue = DoublyLinkedList<WaitQueueData>;
/// An MPSC channel for use in no-alloc systems. `N` sets the size of the queue.
///
/// This channel uses critical sections, however there are extremely small and all `memcpy`
/// operations of `T` are done without critical sections.
pub struct Channel<T, const N: usize> {
// Here are all indexes that are not used in `slots` and ready to be allocated.
freeq: UnsafeCell<Deque<u8, N>>,
// Here are wakers and indexes to slots that are ready to be dequeued by the receiver.
readyq: UnsafeCell<Deque<u8, N>>,
// Waker for the receiver.
receiver_waker: WakerRegistration,
// Storage for N `T`s, so we don't memcpy around a lot of `T`s.
slots: [UnsafeCell<MaybeUninit<T>>; N],
// If there is no room in the queue a `Sender`s can wait for there to be place in the queue.
wait_queue: WaitQueue,
// Keep track of the receiver.
receiver_dropped: UnsafeCell<bool>,
// Keep track of the number of senders.
num_senders: UnsafeCell<usize>,
}
unsafe impl<T, const N: usize> Send for Channel<T, N> {}
unsafe impl<T, const N: usize> Sync for Channel<T, N> {}
struct UnsafeAccess<'a, const N: usize> {
freeq: &'a mut Deque<u8, N>,
readyq: &'a mut Deque<u8, N>,
receiver_dropped: &'a mut bool,
num_senders: &'a mut usize,
}
impl<T, const N: usize> Default for Channel<T, N> {
fn default() -> Self {
Self::new()
}
}
impl<T, const N: usize> Channel<T, N> {
const _CHECK: () = assert!(N < 256, "This queue support a maximum of 255 entries");
/// Create a new channel.
pub const fn new() -> Self {
Self {
freeq: UnsafeCell::new(Deque::new()),
readyq: UnsafeCell::new(Deque::new()),
receiver_waker: WakerRegistration::new(),
slots: [const { UnsafeCell::new(MaybeUninit::uninit()) }; N],
wait_queue: WaitQueue::new(),
receiver_dropped: UnsafeCell::new(false),
num_senders: UnsafeCell::new(0),
}
}
/// Split the queue into a `Sender`/`Receiver` pair.
pub fn split(&mut self) -> (Sender<'_, T, N>, Receiver<'_, T, N>) {
// Fill free queue
for idx in 0..N as u8 {
assert!(!self.freeq.get_mut().is_full());
// SAFETY: This safe as the loop goes from 0 to the capacity of the underlying queue.
unsafe {
self.freeq.get_mut().push_back_unchecked(idx);
}
}
assert!(self.freeq.get_mut().is_full());
// There is now 1 sender
*self.num_senders.get_mut() = 1;
(Sender(self), Receiver(self))
}
fn access<'a>(&'a self, _cs: critical_section::CriticalSection) -> UnsafeAccess<'a, N> {
// SAFETY: This is safe as are in a critical section.
unsafe {
UnsafeAccess {
freeq: &mut *self.freeq.get(),
readyq: &mut *self.readyq.get(),
receiver_dropped: &mut *self.receiver_dropped.get(),
num_senders: &mut *self.num_senders.get(),
}
}
}
/// Return free slot `slot` to the channel.
///
/// This will do one of two things:
/// 1. If there are any waiting `send`-ers, wake the longest-waiting one and hand it `slot`.
/// 2. else, insert `slot` into `self.freeq`.
///
/// SAFETY: `slot` must be a `u8` that is obtained by dequeueing from [`Self::readyq`].
unsafe fn return_free_slot(&self, slot: u8) {
critical_section::with(|cs| {
fence(Ordering::SeqCst);
// If someone is waiting in the `wait_queue`, wake the first one up & hand it the free slot.
if let Some((wait_head, mut freeq_slot)) = self.wait_queue.pop() {
// SAFETY: `freeq_slot` is valid for writes: we are in a critical
// section & the `SlotPtr` lives for at least the duration of the wait queue link.
unsafe { freeq_slot.replace(Some(slot), cs) };
wait_head.wake();
} else {
assert!(!self.access(cs).freeq.is_full());
unsafe { self.access(cs).freeq.push_back_unchecked(slot) }
}
})
}
}
/// Creates a split channel with `'static` lifetime.
#[macro_export]
macro_rules! make_channel {
($type:ty, $size:expr) => {{
static mut CHANNEL: $crate::channel::Channel<$type, $size> =
$crate::channel::Channel::new();
static CHECK: $crate::portable_atomic::AtomicU8 = $crate::portable_atomic::AtomicU8::new(0);
$crate::channel::critical_section::with(|_| {
if CHECK.load(::core::sync::atomic::Ordering::Relaxed) != 0 {
panic!("call to the same `make_channel` instance twice");
}
CHECK.store(1, ::core::sync::atomic::Ordering::Relaxed);
});
// SAFETY: This is safe as we hide the static mut from others to access it.
// Only this point is where the mutable access happens.
#[allow(static_mut_refs)]
unsafe {
CHANNEL.split()
}
}};
}
// -------- Sender
/// Error state for when the receiver has been dropped.
#[cfg_attr(feature = "defmt-03", derive(defmt::Format))]
pub struct NoReceiver<T>(pub T);
/// Errors that 'try_send` can have.
#[cfg_attr(feature = "defmt-03", derive(defmt::Format))]
pub enum TrySendError<T> {
/// Error state for when the receiver has been dropped.
NoReceiver(T),
/// Error state when the queue is full.
Full(T),
}
impl<T> core::fmt::Debug for NoReceiver<T>
where
T: core::fmt::Debug,
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "NoReceiver({:?})", self.0)
}
}
impl<T> core::fmt::Debug for TrySendError<T>
where
T: core::fmt::Debug,
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
TrySendError::NoReceiver(v) => write!(f, "NoReceiver({v:?})"),
TrySendError::Full(v) => write!(f, "Full({v:?})"),
}
}
}
impl<T> PartialEq for TrySendError<T>
where
T: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(TrySendError::NoReceiver(v1), TrySendError::NoReceiver(v2)) => v1.eq(v2),
(TrySendError::NoReceiver(_), TrySendError::Full(_)) => false,
(TrySendError::Full(_), TrySendError::NoReceiver(_)) => false,
(TrySendError::Full(v1), TrySendError::Full(v2)) => v1.eq(v2),
}
}
}
/// A `Sender` can send to the channel and can be cloned.
pub struct Sender<'a, T, const N: usize>(&'a Channel<T, N>);
unsafe impl<T, const N: usize> Send for Sender<'_, T, N> {}
/// This is needed to make the async closure in `send` accept that we "share"
/// the link possible between threads.
#[derive(Clone)]
struct LinkPtr(*mut Option<Link<WaitQueueData>>);
impl LinkPtr {
/// This will dereference the pointer stored within and give out an `&mut`.
unsafe fn get(&mut self) -> &mut Option<Link<WaitQueueData>> {
&mut *self.0
}
}
unsafe impl Send for LinkPtr {}
unsafe impl Sync for LinkPtr {}
/// This is needed to make the async closure in `send` accept that we "share"
/// the link possible between threads.
#[derive(Clone)]
struct SlotPtr(*mut Option<u8>);
impl SlotPtr {
/// Replace the value of this slot with `new_value`, and return
/// the old value.
///
/// SAFETY: the pointer in this `SlotPtr` must be valid for writes.
unsafe fn replace(
&mut self,
new_value: Option<u8>,
_cs: critical_section::CriticalSection,
) -> Option<u8> {
// SAFETY: we are in a critical section.
unsafe { core::ptr::replace(self.0, new_value) }
}
}
unsafe impl Send for SlotPtr {}
unsafe impl Sync for SlotPtr {}
impl<T, const N: usize> core::fmt::Debug for Sender<'_, T, N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "Sender")
}
}
#[cfg(feature = "defmt-03")]
impl<T, const N: usize> defmt::Format for Sender<'_, T, N> {
fn format(&self, f: defmt::Formatter) {
defmt::write!(f, "Sender",)
}
}
impl<T, const N: usize> Sender<'_, T, N> {
#[inline(always)]
fn send_footer(&mut self, idx: u8, val: T) {
// Write the value to the slots, note; this memcpy is not under a critical section.
unsafe {
ptr::write(
self.0.slots.get_unchecked(idx as usize).get() as *mut T,
val,
)
}
// Write the value into the ready queue.
critical_section::with(|cs| {
assert!(!self.0.access(cs).readyq.is_full());
unsafe { self.0.access(cs).readyq.push_back_unchecked(idx) }
});
fence(Ordering::SeqCst);
// If there is a receiver waker, wake it.
self.0.receiver_waker.wake();
}
/// Try to send a value, non-blocking. If the channel is full this will return an error.
pub fn try_send(&mut self, val: T) -> Result<(), TrySendError<T>> {
// If the wait queue is not empty, we can't try to push into the queue.
if !self.0.wait_queue.is_empty() {
return Err(TrySendError::Full(val));
}
// No receiver available.
if self.is_closed() {
return Err(TrySendError::NoReceiver(val));
}
let idx =
if let Some(idx) = critical_section::with(|cs| self.0.access(cs).freeq.pop_front()) {
idx
} else {
return Err(TrySendError::Full(val));
};
self.send_footer(idx, val);
Ok(())
}
/// Send a value. If there is no place left in the queue this will wait until there is.
/// If the receiver does not exist this will return an error.
pub async fn send(&mut self, val: T) -> Result<(), NoReceiver<T>> {
let mut free_slot_ptr: Option<u8> = None;
let mut link_ptr: Option<Link<WaitQueueData>> = None;
// Make this future `Drop`-safe.
// SAFETY(link_ptr): Shadow the original definition of `link_ptr` so we can't abuse it.
let mut link_ptr = LinkPtr(core::ptr::addr_of_mut!(link_ptr));
// SAFETY(freed_slot): Shadow the original definition of `free_slot_ptr` so we can't abuse it.
let mut free_slot_ptr = SlotPtr(core::ptr::addr_of_mut!(free_slot_ptr));
let mut link_ptr2 = link_ptr.clone();
let mut free_slot_ptr2 = free_slot_ptr.clone();
let dropper = OnDrop::new(|| {
// SAFETY: We only run this closure and dereference the pointer if we have
// exited the `poll_fn` below in the `drop(dropper)` call. The other dereference
// of this pointer is in the `poll_fn`.
if let Some(link) = unsafe { link_ptr2.get() } {
link.remove_from_list(&self.0.wait_queue);
}
// Return our potentially-unused free slot.
// Potentially unnecessary c-s because our link was already popped, so there
// is no way for anything else to access the free slot ptr. Gotta think
// about this a bit more...
critical_section::with(|cs| {
if let Some(freed_slot) = unsafe { free_slot_ptr2.replace(None, cs) } {
// SAFETY: freed slot is passed to us from `return_free_slot`, which either
// directly (through `try_recv`), or indirectly (through another `return_free_slot`)
// comes from `readyq`.
unsafe { self.0.return_free_slot(freed_slot) };
}
});
});
let idx = poll_fn(|cx| {
// Do all this in one critical section, else there can be race conditions
critical_section::with(|cs| {
if self.is_closed() {
return Poll::Ready(Err(()));
}
let wq_empty = self.0.wait_queue.is_empty();
let freeq_empty = self.0.access(cs).freeq.is_empty();
// SAFETY: This pointer is only dereferenced here and on drop of the future
// which happens outside this `poll_fn`'s stack frame.
let link = unsafe { link_ptr.get() };
// We are already in the wait queue.
if let Some(queue_link) = link {
if queue_link.is_popped() {
// SAFETY: `free_slot_ptr` is valid for writes until the end of this future.
let slot = unsafe { free_slot_ptr.replace(None, cs) };
// Our link was popped, so it is most definitely not in the list.
// We can safely & correctly `take` it to prevent ourselves from
// redundantly attempting to remove it from the list a 2nd time.
link.take();
// If our link is popped, then:
// 1. We were popped by `return_free_lot` and provided us with a slot.
// 2. We were popped by `Receiver::drop` and it did not provide us with a slot, and the channel is closed.
if let Some(slot) = slot {
Poll::Ready(Ok(slot))
} else {
Poll::Ready(Err(()))
}
} else {
Poll::Pending
}
}
// We are not in the wait queue, but others are, or there is currently no free
// slot available.
else if !wq_empty || freeq_empty {
// Place the link in the wait queue.
let link_ref =
link.insert(Link::new((cx.waker().clone(), free_slot_ptr.clone())));
// SAFETY(new_unchecked): The address to the link is stable as it is defined
// outside this stack frame.
// SAFETY(push): `link_ref` lifetime comes from `link_ptr` and `free_slot_ptr` that
// are shadowed and we make sure in `dropper` that the link is removed from the queue
// before dropping `link_ptr` AND `dropper` makes sure that the shadowed
// `ptr`s live until the end of the stack frame.
unsafe { self.0.wait_queue.push(Pin::new_unchecked(link_ref)) };
Poll::Pending
}
// We are not in the wait queue, no one else is waiting, and there is a free slot available.
else {
assert!(!self.0.access(cs).freeq.is_empty());
let slot = unsafe { self.0.access(cs).freeq.pop_back_unchecked() };
Poll::Ready(Ok(slot))
}
})
})
.await;
// Make sure the link is removed from the queue.
drop(dropper);
if let Ok(idx) = idx {
self.send_footer(idx, val);
Ok(())
} else {
Err(NoReceiver(val))
}
}
/// Returns true if there is no `Receiver`s.
pub fn is_closed(&self) -> bool {
critical_section::with(|cs| *self.0.access(cs).receiver_dropped)
}
/// Is the queue full.
pub fn is_full(&self) -> bool {
critical_section::with(|cs| self.0.access(cs).freeq.is_empty())
}
/// Is the queue empty.
pub fn is_empty(&self) -> bool {
critical_section::with(|cs| self.0.access(cs).freeq.is_full())
}
}
impl<T, const N: usize> Drop for Sender<'_, T, N> {
fn drop(&mut self) {
// Count down the reference counter
let num_senders = critical_section::with(|cs| {
*self.0.access(cs).num_senders -= 1;
*self.0.access(cs).num_senders
});
// If there are no senders, wake the receiver to do error handling.
if num_senders == 0 {
self.0.receiver_waker.wake();
}
}
}
impl<T, const N: usize> Clone for Sender<'_, T, N> {
fn clone(&self) -> Self {
// Count up the reference counter
critical_section::with(|cs| *self.0.access(cs).num_senders += 1);
Self(self.0)
}
}
// -------- Receiver
/// A receiver of the channel. There can only be one receiver at any time.
pub struct Receiver<'a, T, const N: usize>(&'a Channel<T, N>);
unsafe impl<T, const N: usize> Send for Receiver<'_, T, N> {}
impl<T, const N: usize> core::fmt::Debug for Receiver<'_, T, N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "Receiver")
}
}
#[cfg(feature = "defmt-03")]
impl<T, const N: usize> defmt::Format for Receiver<'_, T, N> {
fn format(&self, f: defmt::Formatter) {
defmt::write!(f, "Receiver",)
}
}
/// Possible receive errors.
#[cfg_attr(feature = "defmt-03", derive(defmt::Format))]
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum ReceiveError {
/// Error state for when all senders has been dropped.
NoSender,
/// Error state for when the queue is empty.
Empty,
}
impl<T, const N: usize> Receiver<'_, T, N> {
/// Receives a value if there is one in the channel, non-blocking.
pub fn try_recv(&mut self) -> Result<T, ReceiveError> {
// Try to get a ready slot.
let ready_slot = critical_section::with(|cs| self.0.access(cs).readyq.pop_front());
if let Some(rs) = ready_slot {
// Read the value from the slots, note; this memcpy is not under a critical section.
let r = unsafe { ptr::read(self.0.slots.get_unchecked(rs as usize).get() as *const T) };
// Return the index to the free queue after we've read the value.
// SAFETY: `rs` comes directly from `readyq`.
unsafe { self.0.return_free_slot(rs) };
Ok(r)
} else if self.is_closed() {
Err(ReceiveError::NoSender)
} else {
Err(ReceiveError::Empty)
}
}
/// Receives a value, waiting if the queue is empty.
/// If all senders are dropped this will error with `NoSender`.
pub async fn recv(&mut self) -> Result<T, ReceiveError> {
// There was nothing in the queue, setup the waiting.
poll_fn(|cx| {
// Register waker.
// TODO: Should it happen here or after the if? This might cause a spurious wake.
self.0.receiver_waker.register(cx.waker());
// Try to dequeue.
match self.try_recv() {
Ok(val) => {
return Poll::Ready(Ok(val));
}
Err(ReceiveError::NoSender) => {
return Poll::Ready(Err(ReceiveError::NoSender));
}
_ => {}
}
Poll::Pending
})
.await
}
/// Returns true if there are no `Sender`s.
pub fn is_closed(&self) -> bool {
critical_section::with(|cs| *self.0.access(cs).num_senders == 0)
}
/// Is the queue full.
pub fn is_full(&self) -> bool {
critical_section::with(|cs| self.0.access(cs).readyq.is_full())
}
/// Is the queue empty.
pub fn is_empty(&self) -> bool {
critical_section::with(|cs| self.0.access(cs).readyq.is_empty())
}
}
impl<T, const N: usize> Drop for Receiver<'_, T, N> {
fn drop(&mut self) {
// Mark the receiver as dropped and wake all waiters
critical_section::with(|cs| *self.0.access(cs).receiver_dropped = true);
while let Some((waker, _)) = self.0.wait_queue.pop() {
waker.wake();
}
}
}
#[cfg(test)]
mod tests {
use cassette::Cassette;
use super::*;
#[test]
fn empty() {
let (mut s, mut r) = make_channel!(u32, 10);
assert!(s.is_empty());
assert!(r.is_empty());
s.try_send(1).unwrap();
assert!(!s.is_empty());
assert!(!r.is_empty());
r.try_recv().unwrap();
assert!(s.is_empty());
assert!(r.is_empty());
}
#[test]
fn full() {
let (mut s, mut r) = make_channel!(u32, 3);
for _ in 0..3 {
assert!(!s.is_full());
assert!(!r.is_full());
s.try_send(1).unwrap();
}
assert!(s.is_full());
assert!(r.is_full());
for _ in 0..3 {
r.try_recv().unwrap();
assert!(!s.is_full());
assert!(!r.is_full());
}
}
#[test]
fn send_recieve() {
let (mut s, mut r) = make_channel!(u32, 10);
for i in 0..10 {
s.try_send(i).unwrap();
}
assert_eq!(s.try_send(11), Err(TrySendError::Full(11)));
for i in 0..10 {
assert_eq!(r.try_recv().unwrap(), i);
}
assert_eq!(r.try_recv(), Err(ReceiveError::Empty));
}
#[test]
fn closed_recv() {
let (s, mut r) = make_channel!(u32, 10);
drop(s);
assert!(r.is_closed());
assert_eq!(r.try_recv(), Err(ReceiveError::NoSender));
}
#[test]
fn closed_sender() {
let (mut s, r) = make_channel!(u32, 10);
drop(r);
assert!(s.is_closed());
assert_eq!(s.try_send(11), Err(TrySendError::NoReceiver(11)));
}
#[tokio::test]
async fn stress_channel() {
const NUM_RUNS: usize = 1_000;
const QUEUE_SIZE: usize = 10;
let (s, mut r) = make_channel!(u32, QUEUE_SIZE);
let mut v = std::vec::Vec::new();
for i in 0..NUM_RUNS {
let mut s = s.clone();
v.push(tokio::spawn(async move {
s.send(i as _).await.unwrap();
}));
}
let mut map = std::collections::BTreeSet::new();
for _ in 0..NUM_RUNS {
map.insert(r.recv().await.unwrap());
}
assert_eq!(map.len(), NUM_RUNS);
for v in v {
v.await.unwrap();
}
}
fn make() {
let _ = make_channel!(u32, 10);
}
#[test]
#[should_panic]
fn double_make_channel() {
make();
make();
}
#[test]
fn tuple_channel() {
let _ = make_channel!((i32, u32), 10);
}
fn freeq<const N: usize, T, F, R>(channel: &Channel<T, N>, f: F) -> R
where
F: FnOnce(&mut Deque<u8, N>) -> R,
{
critical_section::with(|cs| f(channel.access(cs).freeq))
}
#[test]
fn dropping_waked_send_returns_freeq_item() {
let (mut tx, mut rx) = make_channel!(u8, 1);
tx.try_send(0).unwrap();
assert!(freeq(&rx.0, |q| q.is_empty()));
// Running this in a separate thread scope to ensure that `pinned_future` is dropped fully.
//
// Calling drop explicitly gets hairy because dropping things behind a `Pin` is not easy.
std::thread::scope(|scope| {
scope.spawn(|| {
let pinned_future = core::pin::pin!(tx.send(1));
let mut future = Cassette::new(pinned_future);
future.poll_on();
assert!(freeq(&rx.0, |q| q.is_empty()));
assert!(!rx.0.wait_queue.is_empty());
assert_eq!(rx.try_recv(), Ok(0));
assert!(freeq(&rx.0, |q| q.is_empty()));
});
});
assert!(!freeq(&rx.0, |q| q.is_empty()));
// Make sure that rx & tx are alive until here for good measure.
drop((tx, rx));
}
}
|