aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorAdam Greig <adam@adamgreig.com>2021-08-15 11:00:01 +0100
committerAdam Greig <adam@adamgreig.com>2021-08-15 11:00:01 +0100
commite94d9dcac90b4b0622f573656f32883807381145 (patch)
treecf1881b7d11d7f37133f1d22cb083ee1a9c77cdf /src
Initial commit. Import `registers.rs` from stm32ral.
Diffstat (limited to 'src')
-rw-r--r--src/lib.rs628
1 files changed, 628 insertions, 0 deletions
diff --git a/src/lib.rs b/src/lib.rs
new file mode 100644
index 0000000..c1eca44
--- /dev/null
+++ b/src/lib.rs
@@ -0,0 +1,628 @@
+// Copyright 2018 Adam Greig
+// See LICENSE-APACHE and LICENSE-MIT for license details.
+
+//! This crate contains an MMIO abstraction that uses macros to read,
+//! modify, and write fields in registers.
+//!
+//! See the [README](https://github.com/adamgreig/ral-registers/blob/master/README.md)
+//! for further details.
+
+#![no_std]
+
+use core::cell::UnsafeCell;
+
+/// A read-write register of type T.
+///
+/// Contains one value of type T and provides volatile read/write functions to it.
+///
+/// # Safety
+/// This register should be used where reads and writes to this peripheral register do not
+/// lead to memory unsafety. For example, it is a poor choice for a DMA target, but less
+/// worrisome for a GPIO output data register.
+///
+/// Access to this register must be synchronised; if multiple threads (or the main thread and an
+/// interrupt service routine) are accessing it simultaneously you may encounter data races.
+pub struct RWRegister<T> {
+ register: UnsafeCell<T>,
+}
+
+impl<T: Copy> RWRegister<T> {
+ /// Reads the value of the register.
+ #[inline(always)]
+ pub fn read(&self) -> T {
+ unsafe { ::core::ptr::read_volatile(self.register.get()) }
+ }
+
+ /// Writes a new value to the register.
+ #[inline(always)]
+ pub fn write(&self, val: T) {
+ unsafe { ::core::ptr::write_volatile(self.register.get(), val) }
+ }
+}
+
+/// A read-write register of type T, where read/write access is unsafe.
+///
+/// Contains one value of type T and provides volatile read/write functions to it.
+///
+/// # Safety
+/// This register should be used where reads and writes to this peripheral may invoke
+/// undefined behaviour or memory unsafety. For example, any registers you write a memory
+/// address into.
+///
+/// Access to this register must be synchronised; if multiple threads (or the main thread and an
+/// interrupt service routine) are accessing it simultaneously you may encounter data races.
+pub struct UnsafeRWRegister<T> {
+ register: UnsafeCell<T>,
+}
+
+impl<T: Copy> UnsafeRWRegister<T> {
+ /// Reads the value of the register.
+ ///
+ /// # Safety
+ /// Refer to [UnsafeRWRegister]'s Safety section.
+ #[inline(always)]
+ pub unsafe fn read(&self) -> T {
+ ::core::ptr::read_volatile(self.register.get())
+ }
+
+ /// Writes a new value to the register.
+ ///
+ /// # Safety
+ /// Refer to [UnsafeRWRegister]'s Safety section.
+ #[inline(always)]
+ pub unsafe fn write(&self, val: T) {
+ ::core::ptr::write_volatile(self.register.get(), val)
+ }
+}
+
+/// A read-only register of type T.
+///
+/// Contains one value of type T and provides a volatile read function to it.
+///
+/// # Safety
+/// This register should be used where reads and writes to this peripheral register do not
+/// lead to memory unsafety.
+///
+/// Access to this register must be synchronised; if multiple threads (or the main thread and an
+/// interrupt service routine) are accessing it simultaneously you may encounter data races.
+pub struct RORegister<T> {
+ register: UnsafeCell<T>,
+}
+
+impl<T: Copy> RORegister<T> {
+ /// Reads the value of the register.
+ #[inline(always)]
+ pub fn read(&self) -> T {
+ unsafe { ::core::ptr::read_volatile(self.register.get()) }
+ }
+}
+
+/// A read-only register of type T, where read access is unsafe.
+///
+/// Contains one value of type T and provides a volatile read function to it.
+///
+/// # Safety
+/// This register should be used where reads to this peripheral may invoke
+/// undefined behaviour or memory unsafety.
+///
+/// Access to this register must be synchronised; if multiple threads (or the main thread and an
+/// interrupt service routine) are accessing it simultaneously you may encounter data races.
+pub struct UnsafeRORegister<T> {
+ register: UnsafeCell<T>,
+}
+
+impl<T: Copy> UnsafeRORegister<T> {
+ /// Reads the value of the register.
+ ///
+ /// # Safety
+ /// Refer to [UnsafeRWRegister]'s Safety section.
+ #[inline(always)]
+ pub unsafe fn read(&self) -> T {
+ ::core::ptr::read_volatile(self.register.get())
+ }
+}
+
+/// A write-only register of type T.
+///
+/// Contains one value of type T and provides a volatile write function to it.
+///
+/// # Safety
+/// This register should be used where writes to this peripheral register do not lead to memory
+/// unsafety.
+///
+/// Access to this register must be synchronised; if multiple threads (or the main thread and an
+/// interrupt service routine) are accessing it simultaneously you may encounter data races.
+pub struct WORegister<T> {
+ register: UnsafeCell<T>,
+}
+
+impl<T: Copy> WORegister<T> {
+ /// Writes a new value to the register.
+ #[inline(always)]
+ pub fn write(&self, val: T) {
+ unsafe { ::core::ptr::write_volatile(self.register.get(), val) }
+ }
+}
+
+/// A write-only register of type T, where write access is unsafe.
+///
+/// Contains one value of type T and provides a volatile write function to it.
+///
+/// # Safety
+/// This register should be used where reads and writes to this peripheral may invoke
+/// undefined behaviour or memory unsafety.
+///
+/// Access to this register must be synchronised; if multiple threads (or the main thread and an
+/// interrupt service routine) are accessing it simultaneously you may encounter data races.
+pub struct UnsafeWORegister<T> {
+ register: UnsafeCell<T>,
+}
+
+impl<T: Copy> UnsafeWORegister<T> {
+ /// Writes a new value to the register.
+ ///
+ /// # Safety
+ /// Refer to [UnsafeRWRegister]'s Safety section.
+ #[inline(always)]
+ pub unsafe fn write(&self, val: T) {
+ ::core::ptr::write_volatile(self.register.get(), val)
+ }
+}
+
+/// Write to a RWRegister or UnsafeRWRegister.
+///
+/// # Examples
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// // Safely acquire the peripheral instance (will panic if already acquired)
+/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+///
+/// // Write some value to the register.
+/// write_reg!(stm32ral::gpio, gpioa, ODR, 1<<3);
+///
+/// // Write values to specific fields. Unspecified fields are written to 0.
+/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog);
+///
+/// // Unsafe access without requiring you to first `take()` the instance
+/// unsafe { write_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) };
+/// # }
+/// ```
+///
+/// # Usage
+/// Like `modify_reg!`, this macro can be used in two ways, either with a single value to write to
+/// the whole register, or with multiple fields each with their own value.
+///
+/// In both cases, the first arguments are:
+/// * the path to the peripheral module: `stm32ral::gpio`,
+/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to
+/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or
+/// `*const RegisterBlock`),
+/// * the register you wish you access: `MODER` (a field on the `RegisterBlock`).
+///
+/// In the single-value usage, the final argument is just the value to write:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// // Turn on PA3 (and turn everything else off).
+/// write_reg!(stm32ral::gpio, gpioa, ODR, 1<<3);
+/// # }
+/// ```
+///
+/// Otherwise, the remaining arguments are each `Field: Value` pairs:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// // Set PA3 to Output, PA4 to Analog, and everything else to 0 (which is Input).
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: 0b01, MODER4: 0b11);
+/// # }
+/// ```
+/// For fields with annotated values, you can also specify a named value:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// // As above, but with named values.
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog);
+/// # }
+/// ```
+///
+/// This macro expands to calling `(*$instance).$register.write(value)`,
+/// where in the second usage, the value is computed as the bitwise OR of
+/// each field value, which are masked and shifted appropriately for the given field.
+/// The named values are brought into scope by `use $peripheral::$register::$field::*` for
+/// each field. The same constants could just be specified manually:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// // As above, but being explicit about named values.
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// write_reg!(stm32ral::gpio, gpioa, MODER, MODER3: stm32ral::gpio::MODER::MODER3::RW::Output,
+/// MODER4: stm32ral::gpio::MODER::MODER4::RW::Analog);
+/// # }
+/// ```
+///
+/// The fully expanded form is equivalent to:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// // As above, but expanded.
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// (*gpioa).MODER.write(
+/// ((stm32ral::gpio::MODER::MODER3::RW::Output << stm32ral::gpio::MODER::MODER3::offset)
+/// & stm32ral::gpio::MODER::MODER3::mask)
+/// |
+/// ((stm32ral::gpio::MODER::MODER4::RW::Analog << stm32ral::gpio::MODER::MODER4::offset)
+/// & stm32ral::gpio::MODER::MODER4::mask)
+/// );
+/// # }
+/// ```
+///
+/// # Safety
+/// This macro will require an unsafe function or block when used with an UnsafeRWRegister,
+/// but not if used with RWRegister.
+///
+/// When run in an unsafe context, peripheral instances are directly accessible without requiring
+/// having called `take()` beforehand:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// unsafe { write_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) };
+/// # }
+/// ```
+/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module;
+/// and the macro brings such constants into scope and then dereferences the provided reference.
+#[macro_export]
+macro_rules! write_reg {
+ ( $periph:path, $instance:expr, $reg:ident, $( $field:ident : $value:expr ),+ ) => {{
+ #[allow(unused_imports)]
+ use $periph::{*};
+ #[allow(unused_imports)]
+ (*$instance).$reg.write(
+ $({ use $periph::{$reg::$field::{mask, offset, W::*, RW::*}}; ($value << offset) & mask }) | *
+ );
+ }};
+ ( $periph:path, $instance:expr, $reg:ident, $value:expr ) => {{
+ #[allow(unused_imports)]
+ use $periph::{*};
+ (*$instance).$reg.write($value);
+ }};
+}
+
+/// Modify a RWRegister or UnsafeRWRegister.
+///
+/// # Examples
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// // Safely acquire the peripheral instance (will panic if already acquired)
+/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+///
+/// // Update the register to ensure bit 3 is set.
+/// modify_reg!(stm32ral::gpio, gpioa, ODR, |reg| reg | (1<<3));
+///
+/// // Write values to specific fields. Unspecified fields are left unchanged.
+/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog);
+///
+/// // Unsafe access without requiring you to first `take()` the instance
+/// unsafe { modify_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) };
+/// # }
+/// ```
+///
+/// # Usage
+/// Like `write_reg!`, this macro can be used in two ways, either with a modification of the entire
+/// register, or by specifying which fields to change and what value to change them to.
+///
+/// In both cases, the first arguments are:
+/// * the path to the peripheral module: `stm32ral::gpio`,
+/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to
+/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or
+/// `*const RegisterBlock`),
+/// * the register you wish you access: `MODER` (a field on the `RegisterBlock`).
+///
+/// In the whole-register usage, the final argument is a closure that accepts the current value
+/// of the register and returns the new value to write:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// // Turn on PA3 without affecting anything else.
+/// modify_reg!(stm32ral::gpio, gpioa, ODR, |reg| reg | (1<<3));
+/// # }
+/// ```
+///
+/// Otherwise, the remaining arguments are `Field: Value` pairs:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// // Set PA3 to Output, PA4 to Analog, and leave everything else unchanged.
+/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: 0b01, MODER4: 0b11);
+/// # }
+/// ```
+///
+/// For fields with annotated values, you can also specify a named value:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// // As above, but with named values.
+/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: Output, MODER4: Analog);
+/// # }
+/// ```
+///
+/// This macro expands to calling `(*instance).register.write(value)`.
+/// When called with a closure, `(*instance).register.read()` is called, the result
+/// passed in to the closure, and the return value of the closure is used for `value`.
+/// When called with `Field: Value` arguments, the current value is read and then masked
+/// according to the specified fields, and then ORd with the OR of each field value,
+/// each masked and shifted appropriately for the field. The named values are brought into scope
+/// by `use peripheral::register::field::*` for each field. The same constants could just be
+/// specified manually:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// // As above, but being explicit about named values.
+/// modify_reg!(stm32ral::gpio, gpioa, MODER, MODER3: stm32ral::gpio::MODER::MODER3::RW::Output,
+/// MODER4: stm32ral::gpio::MODER::MODER4::RW::Analog);
+/// # }
+/// ```
+///
+/// The fully expanded form is equivalent to:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// // As above, but expanded.
+/// (*gpioa).MODER.write(
+/// (
+/// // First read the current value...
+/// (*gpioa).MODER.read()
+/// // Then AND it with an appropriate mask...
+/// &
+/// !( stm32ral::gpio::MODER::MODER3::mask | stm32ral::gpio::MODER::MODER4::mask )
+/// )
+/// // Then OR with each field value.
+/// |
+/// ((stm32ral::gpio::MODER::MODER3::RW::Output << stm32ral::gpio::MODER::MODER3::offset)
+/// & stm32ral::gpio::MODER::MODER3::mask)
+/// |
+/// ((stm32ral::gpio::MODER::MODER4::RW::Analog << stm32ral::gpio::MODER::MODER3::offset)
+/// & stm32ral::gpio::MODER::MODER3::mask)
+/// );
+/// # }
+/// ```
+///
+/// # Safety
+/// This macro will require an unsafe function or block when used with an UnsafeRWRegister,
+/// but not if used with RWRegister.
+///
+/// When run in an unsafe context, peripheral instances are directly accessible without requiring
+/// having called `take()` beforehand:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// unsafe { modify_reg!(stm32ral::gpio, GPIOA, MODER, MODER3: Output, MODER4: Analog) };
+/// # }
+/// ```
+/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module;
+/// and the macro brings such constants into scope and then dereferences the provided reference.
+#[macro_export]
+macro_rules! modify_reg {
+ ( $periph:path, $instance:expr, $reg:ident, $( $field:ident : $value:expr ),+ ) => {{
+ #[allow(unused_imports)]
+ use $periph::{*};
+ #[allow(unused_imports)]
+ (*$instance).$reg.write(
+ ((*$instance).$reg.read() & !( $({ use $periph::{$reg::$field::mask}; mask }) | * ))
+ | $({ use $periph::{$reg::$field::{mask, offset, W::*, RW::*}}; ($value << offset) & mask }) | *);
+ }};
+ ( $periph:path, $instance:expr, $reg:ident, $fn:expr ) => {{
+ #[allow(unused_imports)]
+ use $periph::{*};
+ (*$instance).$reg.write($fn((*$instance).$reg.read()));
+ }};
+}
+
+/// Read the value from a RORegister, RWRegister, UnsafeRORegister, or UnsafeRWRegister.
+///
+/// # Examples
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// // Safely acquire the peripheral instance (will panic if already acquired)
+/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+///
+/// // Read the whole register.
+/// let val = read_reg!(stm32ral::gpio, gpioa, IDR);
+///
+/// // Read one field from the register.
+/// let val = read_reg!(stm32ral::gpio, gpioa, IDR, IDR2);
+///
+/// // Read multiple fields from the register.
+/// let (val1, val2, val3) = read_reg!(stm32ral::gpio, gpioa, IDR, IDR0, IDR1, IDR2);
+///
+/// // Check if one field is equal to a specific value, with the field's named values in scope.
+/// while read_reg!(stm32ral::gpio, gpioa, IDR, IDR2 == High) {}
+///
+/// // Unsafe access without requiring you to first `take()` the instance
+/// let val = unsafe { read_reg!(stm32ral::gpio, GPIOA, IDR) };
+/// # }
+/// ```
+///
+/// # Usage
+/// Like `write_reg!`, this macro can be used multiple ways, either reading the entire register or
+/// reading a one or more fields from it and potentially performing a comparison with one field.
+///
+/// In all cases, the first arguments are:
+/// * the path to the peripheral module: `stm32ral::gpio`,
+/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to
+/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or
+/// `*const RegisterBlock`),
+/// * the register you wish to access: `IDR` (a field on the `RegisterBlock`).
+///
+/// In the whole-register usage, the macro simply returns the register's value:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// // Read the entire value of GPIOA.IDR into `val`.
+/// let val = read_reg!(stm32ral::gpio, gpioa, IDR);
+/// # }
+/// ```
+///
+/// For reading individual fields, the macro masks and shifts appropriately:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// // Read just the value of the field GPIOA.IDR2 into `val`.
+/// let val = read_reg!(stm32ral::gpio, gpioa, IDR, IDR2);
+///
+/// // As above, but expanded for exposition:
+/// let val = ((*gpioa).IDR.read() & stm32ral::gpio::IDR::IDR2::mask)
+/// >> stm32ral::gpio::IDR::IDR2::offset;
+///
+/// // Read multiple fields
+/// let (val1, val2) = read_reg!(stm32ral::gpio, gpioa, IDR, IDR2, IDR3);
+///
+/// // As above, but expanded for exposition:
+/// let (val1, val2) = { let val = (*gpioa).IDR.read();
+/// ((val & stm32ral::gpio::IDR::IDR2::mask) >> stm32ral::gpio::IDR::IDR2::offset,
+/// (val & stm32ral::gpio::IDR::IDR3::mask) >> stm32ral::gpio::IDR::IDR3::offset,
+/// )};
+/// # }
+/// ```
+///
+/// For comparing a single field, the macro masks and shifts and then performs the comparison:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// # let rcc = stm32ral::rcc::RCC::take().unwrap();
+/// // Loop while PA2 is High.
+/// while read_reg!(stm32ral::gpio, gpioa, IDR, IDR2 == High) {}
+///
+/// // Only proceed if the clock is not the HSI.
+/// if read_reg!(stm32ral::rcc, rcc, CFGR, SWS != HSI) { }
+///
+/// // Equivalent expansion:
+/// if (((*rcc).CFGR.read() & stm32ral::rcc::CFGR::SWS::mask)
+/// >> stm32ral::rcc::CFGR::SWS::offset) != stm32ral::rcc::CFGR::SWS::R::HSI { }
+/// # }
+/// ```
+///
+/// # Safety
+/// This macro will require an unsafe function or block when used with an UnsafeRWRegister or
+/// UnsafeRORegister, but not if used with RWRegister, or RORegister.
+///
+/// When run in an unsafe context, peripheral instances are directly accessible without requiring
+/// having called `take()` beforehand:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// let val = unsafe { read_reg!(stm32ral::gpio, GPIOA, MODER) };
+/// # }
+/// ```
+/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module;
+/// and the macro brings such constants into scope and then dereferences the provided reference.
+#[macro_export]
+macro_rules! read_reg {
+ ( $periph:path, $instance:expr, $reg:ident, $( $field:ident ),+ ) => {{
+ #[allow(unused_imports)]
+ use $periph::{*};
+ let val = ((*$instance).$reg.read());
+ ( $({
+ #[allow(unused_imports)]
+ use $periph::{$reg::$field::{mask, offset, R::*, RW::*}};
+ (val & mask) >> offset
+ }) , *)
+ }};
+ ( $periph:path, $instance:expr, $reg:ident, $field:ident $($cmp:tt)* ) => {{
+ #[allow(unused_imports)]
+ use $periph::{*};
+ #[allow(unused_imports)]
+ use $periph::{$reg::$field::{mask, offset, R::*, RW::*}};
+ (((*$instance).$reg.read() & mask) >> offset) $($cmp)*
+ }};
+ ( $periph:path, $instance:expr, $reg:ident ) => {{
+ #[allow(unused_imports)]
+ use $periph::{*};
+ ((*$instance).$reg.read())
+ }};
+}
+
+/// Reset a RWRegister, UnsafeRWRegister, WORegister, or UnsafeWORegister to its reset value.
+///
+/// # Examples
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// // Safely acquire the peripheral instance (will panic if already acquired)
+/// let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+///
+/// // Reset PA14 and PA15 to their reset state
+/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER, MODER14, MODER15);
+///
+/// // Reset the entire GPIOA.MODER to its reset state
+/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER);
+/// # }
+/// ```
+///
+/// # Usage
+/// Like `write_reg!`, this macro can be used in two ways, either resetting the entire register
+/// or just resetting specific fields within in. The register or fields are written with their
+/// reset values.
+///
+/// In both cases, the first arguments are:
+/// * the path to the peripheral module: `stm32ral::gpio`,
+/// * a reference to the instance of that peripheral: 'gpioa' (anything which dereferences to
+/// `RegisterBlock`, such as `Instance`, `&Instance`, `&RegisterBlock`, or
+/// `*const RegisterBlock`),
+/// * the module for the instance of that peripheral: `GPIOA`,
+/// * the register you wish to access: `MODER` (a field on the `RegisterBlock`).
+///
+/// In the whole-register usage, that's it:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// // Reset the entire GPIOA.MODER
+/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER);
+/// # }
+/// ```
+///
+/// Otherwise, the remaining arguments are each field names:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// # let gpioa = stm32ral::gpio::GPIOA::take().unwrap();
+/// // Reset the JTAG pins
+/// reset_reg!(stm32ral::gpio, gpioa, GPIOA, MODER, MODER13, MODER14, MODER15);
+/// reset_reg!(stm32ral::gpio, gpioa, GPIOB, MODER, MODER3, MODER4);
+/// # }
+/// ```
+///
+/// The second form is only available to RWRegister and UnsafeRWRegister, since `.read()` is
+/// not available for WORegister and UnsafeWORegister.
+///
+/// This macro expands to calling `(*$instance).$register.write(value)`, where
+/// `value` is either the register's reset value, or the current read value of the register
+/// masked appropriately and combined with the reset value for each field.
+///
+/// # Safety
+/// This macro will require an unsafe function or block when used with an UnsafeRWRegister or
+/// UnsafeRORegister, but not if used with RWRegister or RORegister.
+///
+/// When run in an unsafe context, peripheral instances are directly accessible without requiring
+/// having called `take()` beforehand:
+/// ```rust,no_run
+/// # use stm32ral::{read_reg, write_reg, modify_reg, reset_reg}; fn main() {
+/// unsafe { reset_reg!(stm32ral::gpio, GPIOA, GPIOA, MODER) };
+/// # }
+/// ```
+/// This works because `GPIOA` is a `*const RegisterBlock` in the `stm32ral::gpio` module;
+/// and the macro brings such constants into scope and then dereferences the provided reference.
+///
+/// Note that the second argument is a `*const` and the third is a path; despite both being written
+/// `GPIOA` they are not the same thing.
+#[macro_export]
+macro_rules! reset_reg {
+ ( $periph:path, $instance:expr, $instancemod:path, $reg:ident, $( $field:ident ),+ ) => {{
+ #[allow(unused_imports)]
+ use $periph::{*};
+ use $periph::{$instancemod::{reset}};
+ #[allow(unused_imports)]
+ (*$instance).$reg.write({
+ let resetmask: u32 = $({ use $periph::{$reg::$field::mask}; mask }) | *;
+ ((*$instance).$reg.read() & !resetmask) | (reset.$reg & resetmask)
+ });
+ }};
+ ( $periph:path, $instance:expr, $instancemod:path, $reg:ident ) => {{
+ #[allow(unused_imports)]
+ use $periph::{*};
+ use $periph::{$instancemod::{reset}};
+ (*$instance).$reg.write(reset.$reg);
+ }};
+}